
19
AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x
http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=74

GPU Hızlandırmalı Veri Demetleme Algoritmalarının İncelenmesi

Survey of GPU Accelerated Data Clustering Algorithms

Nazire Merve ÇETİN, Gazi Üniversitesi, Bilgisayar Mühendisliği Anabilim Dalı,
merve_cetin_89@hotmail.com

Dr.Murat HACIÖMEROĞLU, Gazi Üniversitesi, Bilgisayar Mühendisliği Bölümü, murath@gazi.edu.tr

ÖZET Veri demetleme algoritmaları, arama; spam, saldırı tespiti; hücre, gen, doküman analizi;
moleküler dinamik simülasyonlarının biçimlerinin analizi gibi uygulamalar için oldukça
önemlidirler. Veri demetleme algoritmaları için birçok araç geliştirilmiştir; ancak günümüzde
teknolojinin hızla gelişmesiyle toplanan veri miktarı git gide artmaktadır. Veri miktarının
artması, analizin neticesini olumlu etkilese de mevcut veri demetleme araçları, büyük-ölçekli
veri kümeleriyle çalışan uygulamaların gereksinimlerini hız bakımından karşılayamaz hale
gelmişlerdir. Veri demetlemede hızın rolü, veri madenciliği araştırma topluluğunun bir süredir
ilgi alanındadır. Araştırmacılar, çeşitli optimizasyon tekniklerinden, veri yapısı
tasarımlarından, CPU'da paralelleştirme tekniklerinden ve PC küme sistemi kullanımı gibi
yöntemlerden yararlanmaktadırlar. Fakat son zamanlarda düşük maliyet ile yüksek performans
sunan yeni bir yaklaşım tüm ilgiyi üzerine çekmiştir: Genel Amaçlı GPU Programlama
(GPGPU). GPU’ların yüksek paralel hesaplama gücü ve grafik kartlarındaki gelişimin CPU’ya
oranla daha hızlı hızlanması, aslında grafik canlandırma ve oyunlar için yoğun matematiksel
hesaplamalar yapmak üzere tasarlanan grafik kartlarından genel amaçlı programlar için de
yararlanmayı söz konusu hale getirmiştir. Bu makalede, GPGPU yaklaşımıyla veri demetleme
algoritmalarının performansını artıran çalışmalar incelenmiş, özetlenmiş, avantajlarından ve
eksik yanlarından bahsedilmiştir. Sonuç olarak, bu yaklaşımının üstünlüğü göz önünde
bulundurularak konuyla ilgili bilime katkı sağlanabilecek açık alanlar verilmiş ve incelenen
çalışmalardan elde edilen GPGPU yaklaşımıyla uygulama geliştirirken dikkat edilmesi gereken
hususlar ortaya konulmuştur.

Anahtar
Kelimeler:

CUDA; hızlandırma için GPU; genel amaçlı gpu programlama (GPGPU); grafik işlemci birimi
(GPU); paralel hesaplama; veri demetleme

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
20

ABSTRACT Data clustering algorithms are quite important for applications such as search; spam, attack
detection; cell, gene, document analysis; analysis of conformations of molecular dynamics
simulations. Many tools are developed for data clustering algorithms. However, today
technology is improving rapidly so that collected data amount grows more and more.
Although increased data amount affects the result of analysis positively, when current data
clustering tools work with large scale datasets, they don't meet the requirements of such that
applications in terms of speed. Data mining research community is interested in the rol of
speed on data clustering for a while. Researchers take advantage of methods such as various
optimization techniques, data structure designs, parallel techniques on CPU, using PC
cluster systems. However, recently a new approach which offers low cost and high
performance, attracts all attention: General Purpose GPU Programming: (GPGPU). Through
high parallel computing power of GPUs and more rapid development of graphics carts than
CPUs, it has become to benefit graphics carts, which design to do intensive mathematical
computations, for general purpose programs. In this paper, we investigate works that increase
performance of data clustering algorithms with GPGPU approach, summarize them, mention
advantages and disadvantages of these works. In conclusion, considering the advantages of
this approach, prospected areas in this matter that could contribute to the science are given
and particular points in developing the application by GPGPU approach were exhibited from
the outcomes of verified practices.

Keywords: CUDA; GPU for acceleration; general purpose programming (GPGPU); graphic processor
unit (GPU); parallel computing; data clustering

GPU Hızlandırmalı Veri Demetleme Algoritmalarının İncelenmesi – N. M. ÇETİN, M. HACIÖMEROĞLU

1. GİRİŞ

 1980’li yıllarda GPU (grafik işlemci birimi) geliştirme çabaları IBM ve Intel’in

elindeydi. 1990’lı yıllarda ise S3 Grafik, NVIDIA ve ATI gibi sadece grafik kartı geliştirmeye

yönelen firmalar doğdu. Bu yıllarda 2 boyutlu donanımsal hızlandırma yaygınlaştı ve

OpenGL (OpenGL (Open Graphics Library), 2012) grafik programlama kütüphanesi

kullanıma sunuldu. Böylece grafik işlemede yeni bir döneme girildi. 2000’li yıllara

gelindiğinde ise GPU'nun hesaplama gücü çok artmıştı. Gerçek zamanlı, yüksek tanımlı 3

boyutlu grafikler için doymak bilmeyen piyasa talebi sebebiyle GPU'lar bir evrim

geçirmiştir. Günümüzde GPU'lar yüksek hesapsal güce, çok çekirdekli işlemciye ve çok

yüksek bellek bant genişliğine sahip; programlanabilir; yüksek derece paralel; çok thread’li

hale gelmişlerdir. Şekil 1.1 ve Şekil 1.2 GPU'ların yıllara göre gelişen durumunu CPU

(merkezi işlemci birimi) ile karşılaştırarak göstermektedir (NVIDIA, 2012).

Şekil 1.1 CPU ve GPU için saniyedeki
ondalıklı sayı işlemleri karşılaştırması

(NVIDIA, 2012)

Şekil 1.2 CPU ve GPU bellek bant genişliği
karşılaştırması (NVIDIA, 2012)

 Görüldüğü gibi grafik kartlarındaki gelişim CPU’ya oranla çok daha hızlı

hızlanmaktadır. Aslında grafik canlandırma ve oyunlar için yoğun matematiksel

hesaplamalar yapmak üzere tasarlanan grafik kartlarının yüksek paralel hesaplama gücü

onlardan genel amaçlı programlar için de yararlanmayı söz konusu hale getirmiştir.

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
22

 Genel amaçlı bilimsel ve mühendislik uygulamalarını hızlandırmak için GPU'nun

CPU ile birlikte kullanılması yaklaşımına "Genel Amaçlı GPU Programlama veya Hesaplama",

kısaca "GPGPU" denir. GPGPU, uygulamanın hesapsal yoğun kısımlarını paralel bir

biçimde GPU'da, kalan kısımları ise CPU üzerinde çalıştırmayı önerir. CPU'lar seri işleme

için optimize edilmiş birkaç çekirdekten oluşurken GPU'lar yüksek derecede paralelizm için

tasarlanmış küçük ve etkili binlerce çekirdekten meydana gelir. Bu nedenle, CPU ve GPU

güçlü ve verimli bir kombinasyon olmaktadır (Nvidia, 2012).

 GPU'lardan genel amaçlı programlar için yararlanmak için Nvidia Cg (Corporation,

2012) ve OpenGL gölgelendirici (İng. shader) dili gibi grafik API’leriyle (Uygulama

Programlama Arayüzü) genel amaçlı uygulamalar gerçekleştirilmeye çalışılmıştır. Ancak,

GPU mimarilerinin ve programlama modellerinin CPU’dan çok farklı olması nedeniyle

grafik API’lerinde genel bir problemi ifade etmek ve CPU için yazılan bir kodu uyarlamak

oldukça zordur. Gelişmelerin artışıyla birlikte daha kullanışlı arayüzler tasarlanmıştır: Lib

Sh (Lib Sh - Embedded Metaprogramming Language, 2012), Close to Metal (AMD "Close To

Metal" Technology, 2012), BrookGPU (BrookGPU, 2012), DirectCompute (The Compute

Shader Technology (DirectCompute), 2012), OpenCL (OpenCL™ (Open Computing

Language) Zone, 2012), C++ AMP (C++ AMP (C++ Accelerated Massive Parallelism), 2012),

CUDA (CUDA™ (Compute Unified Device Architecture) Zone, 2012). Bunlardan en önde

gideni Nvidia'nın CUDA çözümüdür. Lib Sh, Close to Metal, BrookGPU arayüzleri uzun

süredir aktif geliştirmede değildirler. DirectCompute, Windows Vista ve 7 altında GPU’da

genel amaçlı hesaplamayı destekleyen bir API’dir. OpenCL ise CPU, GPU, DSP (sayısal

sinyal işlemci) ve diğer işlemcileri içeren heterojen platformlarda çalıştırmak üzere program

yazmak için bir çatı (İng. framework) niteliğinde, halen geliştirilen bir açık standarttır.

OpenCL’de programlama CUDA’ya göre daha güç ve daha düşük performanslıdır; fakat

heterojen ortamlarda veya farklı platformlarda çalışmak için iyi bir çözümdür (Temizel,

2011). C++ AMP, veri paralel uygulamaları donanım hızlandırıcılara devrederek performansı

artırmaya yardımcı olmak için tasarlanmıştır.

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
23

 Makalede, ikinci bölümde GPU mimarisi ve CUDA programlama hakkında bilgi

verilecek, üçüncü bölümde konuyla ilgili literatürdeki çalışmalara değinilecek, son bölümde

ise elde edilen sonuçlar sıralanarak konuyla ilgili açık alanlar belirtilecektir.

2. GPU MİMARİSİ ve CUDA

 Kasım 2006'da Nvidia, yeni bir birleştirilmiş boruhattı (İng. pipeline) ve

gölgelendiririci mimarisine sahip CUDA destekli ilk kartını (GeForce 8800 GTX) tanıttı.

CUDA’nın diğer teknolojilerden daha fazla dokümantasyona sahip olması, NVIDIA’nın hızlı

performanslı ürünleri, C-benzeri sentaks, kolay kullanım ve düşük maliyet gibi sebepler

araştırmacıların uygulamalarını CUDA ile geliştirmeyi tercih etmelerine sebep olmuştur.

Günümüzde Adobe Creative Suite ve Mathematica gibi yoğun veri hesaplama içeren

uygulamaların CUDA ile donanım hızlandırmalı versiyonları geliştirilmiştir.

 CUDA destekli kartlar donanımsal olarak her biri 8 SP (İng. Stream Processor - akış

işlemci) içeren bir dizi SM'den (İng. Stream Multiprocessor - akış çokişlemci) meydana gelir.

Örneğin; GeForce GT630M her biri 8 çekirdekli 12 SM'ye sahiptir (toplamda 96 eşzamanlı

çalıştırma çekirdeği vardır). SM'ler tek komut çok thread (SIMT) mimarisine sahiptir.

Herhangi bir saat döngüsünde her SP aynı komutu farklı veriye işleyerek çalıştırır. Her SM,

Şekil 1.3'de görüldüğü gibi 4 farklı tür yerleşik belleğe sahiptir:

Saklayıcı (İng. Register): Her SP için 32-bit yüksek hızlı saklayıcılar dizisi vardır.

Paylaşılan bellek: Her SM, tüm SP'leri tarafından paylaşılan, hızlı, küçük bir miktar (SM

başına 16 KB) paylaşılan bellek içerir.

Sabit ve doku önbellek : Her SM, GPU üzerindeki tüm SP'ler tarafından paylaşılan, sadece

okunabilir sabit ve doku önbelleğe sahiptir.

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
24

Şekil 1.3 Bir CUDA destekli cihazdaki bellek alanları

 Yerel bellek ve global bellek gibi yerleşik olmayan bellekler genelde 400'den 600 saat

döngüsüne kadar varan uzun erişim gecikmelerine sahiptir. En büyük bellek alanına global

bellek sahiptir. SM'ler global bellek aracılığıyla iletişim kurabilirler.

 CPU'larda yerleşik kaynakların önemli bir kısmı, genel amaçlı hesaplama, dallanma,

senkronizasyon, pipelining ve önbellekleme için büyük komut kümelerini çözmeye tahsis

edilmiştir. Bu yüzden ondalıklı sayı hesaplamaları için kullanılabilir kaynaklar sınırlıdır.

GPU'larda ise kaynakların çoğunluğu veri işlemeye tahsis edilmiştir. GPU mimarisi çok

thread'li yapıdadır. Çok çekirdekli büyük paralel mimarinin üst seviyesinde, thread'ler bir

grid'e organize olurlar. Grid, 2 boyutlu bloklar kümesi içerir. Bir blok tek bir SM üzerinde

çalışır ve global olarak diğer bloklarla senkronize edilemez. Blok içindeki thread'ler, bir SM

içindeki farklı çekirdeklere (SP) tahsis edilirler. Bir bloktaki tüm thread'lerin kendi

saklayıcıları vardır ve az yük getiren bir bariyerle aynı işlevi gören thread senkronizasyon

fonksiyonu vardır. Thread'ler warp'lara organize olurlar. Warp, 32 paralel thread'den oluşan

ve her SM'nin zamanlanma birimi olan yapıdır. Bir warp bir anda bir komut çalıştırır, bu

yüzden sadece warp'taki 32 thread'in hepsi aynı çalıştırma yoluna sahipken tam verimliliğe

ulaşılabilir. Bu durum iki önemli sonuç doğurur. Birincisi, bir warp'taki thread'ler koşullu

dallanma nedeniyle farklı çalıştırma yollarına sahipse, warp her dalı seri bir şekilde

çalıştıracaktır. Bu duruma "thread ayrılma" (İng. thread divergence) denir ve warp için çalışan

komutların toplam zamanını arttırır. İkincisi, bir bloktaki thread'lerin sayısı warp boyutunun

bir katı olmazsa, kalan komut döngüleri boşa gidecektir. Bir thread bloğu içindeki thread'ler

aynı anda global bellekten peş peşe elemanlara erişirlerse, tek bir bellek işleminde birçok

eleman kullanılır. Buna "bellek bütünleştirme" (İng. memory coalescing) denir. Paylaşılan bellek

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
25

yığın (İng. bank) yapılarında organize olur. Aynı anda birçok thread'in aynı yığına erişim

talebi "yığın çatışmasına" (İng. bank conflict) neden olur. CUDA bu durumu, thread'lere seri

erişim vererek çözer, bu da çalışma süresini arttırır.

3. LİTERATÜRE BAKIŞ

 Teknolojinin gelişimiyle birlikte veri toplama yeteneği de artmış, analiz edilecek çok

boyutlu ve geniş ölçekli veri kümeleri doğurmuştur. Veri demetleme uygulamalarında veri

boyutu arttıkça makul bir sürede programın sonlanmasına yönelik çalışmalara ilgi artmıştır.

Son zamanlarda araştırmacılar düşük maliyetle yüksek performans sağlayan GPGPU

yaklaşımını tercih etmeye başlamıştır.

 Veri demetleme algoritmalarının performansını GPU ile güçlendiren çalışmalar, bu

başlık altında önce algoritmanın kısa bir açıklaması ardından tarihsel sırayla çalışmaların

özeti şeklinde anlatılacaktır.

3.1. K-means Algoritması

 K-means algoritması, 1957 yılında Cox tarafından ortaya atılmıştır; 1967 yılında

MacQueen (MacQueen, 1967) tarafından k-means adı verilmiştir. Algoritmanın adımları

şunlardır (Farivar, Rebolledo, Chan, & Campbell, 2008):

1. Demet sayısı k’yi belirle.

2. Rastgele k kadar demet üret.

3. Her noktayı en yakın demet merkezine ata.

4. Yeni demet merkezlerini yeniden hesapla.

5. Herhangi bir yakınsama kriteri karşılanana dek önceki iki adımı tekrarla.

 K-means basitliği, uygulama alanının geniş olması ve paralelleştirmeye çok uygun

yapısı ile bu zamana kadar literatürde GPU ile performansının geliştirilmesi için üzerinde en

fazla çalışılan veri demetleme algoritmasıdır.

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
26

 Hall & Hart (2004) (Hall & Hart, 2004) bildiğimiz kadarı ile bir veri demetleme

algoritmasını GPU ile hızlandırmaya çalışan ilk çalışmayı gerçekleştirmişlerdir. Cg grafik

programlama API’sini kullanarak k-means'i GPU’da uygulamışlardır. GPU programlamanın

daha zor olduğu o dönemde veri doku ünitelerinde saklanmakta idi. Bu durum aynı anda

kısıtlı sayıda verinin hesaplanmasına izin veriyordu. Dolayısıyla veri ve boyut sayısında

kısıtlamalar çok önemli bir sorundu. Yazarlar, bu probleme, çok geçişli etiketleme ve doku

yapıları içinde farklı bir veri düzeni kullanarak çözüm getirmeye çalışmışlardır. Herhangi bir

zamanda, sadece bir demet merkezi, parça gölgelendirici sabitlerinde saklanabilmiştir. Bu

yapı, demet sayısı arttıkça hesaplama geçişleri arttığından performansın sınırlanmasına

neden olmaktadır. Hesaplanan uzaklıkların derinlik tamponuna yazılması her defasında

değerlerin 0 ile 1 aralığına ölçeklenmesini gerektirmiştir. Deneylere göre, CPU uygulamasına

göre sadece 1.5 ila 3 kat hızlanma sağlanabilmiştir. Benzer olarak, Cao ve ark.(2006) (Cao,

Tung, & Zhou, 2006) çok geçişli hesaplama metodunu kullanmışlar; ek olarak grafik

işlemcisinin donanım hızlandırmalı vektör operasyonlarını şablon tamponu kullanarak

parça işlemcideki işlem sayısını azaltmışlardır. Deneylere göre, CPU uygulamasına göre 3 ila

8 kat hızlanma sağlayabilmişlerdir. Takizawa & Kobayashi (2006) (Takizawa & Kobayashi,

2006) de aynı sorunu ele almışlar; fakat daha önceki çalışmaların probleme çok geçişli bir

mekanizmayla çözüm getirmelerinden farklı olarak, bir PC küme sistemi kullanarak 3

seviyeli hiyerarşik paralel işleme geliştirmişlerdir. Büyük-ölçekli veri demetleme görevini,

küçük alt kümeleri demetleme görevine bölmüşler. Alt görevleri GPU ile donatılmış PC'lere

dağıtmışlar. Alt görevlerde GPU’yu en yakın komşu aramayı hızlandırmak için kullanmışlar.

Uygulamayı MPI ve OpenGL ile geliştirmişler. CPU ile GPU uygulamalarının aynı sonuçları

verip vermediğini ele almamışlar. Bu çalışmanın önemi, işi birçok GPU’ya büyük parçalar

(coarse-grained) seviyesinde dağıtmanın mümkün olduğunu göstermesidir. İlerleyen

yıllarda araştırmacıların ilgisi bu yöne kaymaya başlayacaktır. Deneylere göre, GPU

olmaksızın yalnız CPU kümesine göre, yazarların GPU ile donatılmış CPU kümesi 4 kata

kadar hızlanma sağlamış.

 2006 yılının sonlarına geldiğimizde Nvidia’nın CUDA arayüzü ortaya çıkmış, GPU

ile güçlendirilmiş veri demetleme uygulamaları geliştirmek isteyen fakat mevcut grafik

API’lerinde genel bir problem ifade etmenin zorluğuyla karşılaşan araştırmacılara, C-benzeri

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
27

sentaks, yüzlerce çekirdekli yüksek derecede paralel bir mimari ve çok yüksek bellek bant

genişliği sağlanmıştır. CUDA’nın getirdiği kolaylıklarla birlikte, GPU ile veri demetleme

algoritmalarının performansını artırma çalışmaları hem çoğalmış hem de -CUDA’nın da halen

geliştirilmeye devam etmesiyle- performans iyileştirmeleri yüzlerce katı bulmuştur. CUDA

arayüzünü kullanarak k-means demetleme algoritmasının GPU tabanlı uygulaması ilk kez

Che ve ark. (2007) (Che, Meng, Sheaffer, & Skadron, 2007)’nın çalışmasında görülmüştür.

Yazarlar, önceki çalışmalardaki gibi GPU’da sadece en yakın demet merkezlerinin

bulunduğu aşamayı her thread’e 1 veri noktasının hesabını vererek paralelleştirmişlerdir.

Deneylerde, k-means’in CUDA versiyonu, MineBench CPU versiyonuna göre 8 kata kadar

hızlanma göstermiştir. Yazarlar, CUDA’nın sunduğu bir çok imkandan yararlanmadıkları ve

herhangi bir tasarım yapmadıkları halde, geçmiş çalışmalara göre oldukça iyi bir hızlanma

elde etmişlerdir. Bu durum GPGPU’nun çok büyük umut vaat ettiğinin açık bir

göstergesidir. Yazarların çalışmasına çok benzerlik gösteren Farivar ve ark. (2008) (Farivar,

Rebolledo, Chan, & Campbell, 2008) çalışmasında ise k-merkezlere çok sık erişim olması

nedeniyle bellek erişim gecikmesinin önüne geçmek için demet merkezleri GPU’nun global

belleği yerine GPU’nun sabit (constant) belleğinde saklanmıştır. Bir boyutlu veri noktaları

kullandıkları deneylerde, temel CPU uygulamasına göre, geliştirdikleri uygulama 13 kat

hızlanma sunmuştur. Bu çalışma, sık erişilen veriler için sabit bellek kullanımının

performanstaki katkısını açıkça göstermiştir. Öte yandan bu durum, demet ve boyut sayısını

sınırlamıştır. Ayrıca, deneylerde çok boyutlu bir veri kümesi kullansalardı, uzaklık hesabı

tek bir çıkarma işlemi ile hesaplanamayacak, eleman başına düşen hesapsal yük artacak ve

gerçek veri kümeleri kullanıldığında uygulamanın nasıl çalıştığıyla ilgili daha doğru

sonuçlar elde edilecekti. Global bellek erişimi gecikmesini önlemeye çalışan bir başka

çalışma Che ve ark. (2008) (Che, Boyer, Meng, Sheaffer, & Skadron, 2008)’in uygulamasıdır.

Bu amaçla yazarlar tüm veri kümesini GPU’nun doku belleğine, demet merkezlerini ise

GPU’nun sabit belleğine saklamışlar. Deneylerde tek thread'li CPU referans uygulamasına

göre 72 kat; 4 thread'liye göre 35 kat hızlanma sağlamışlardır. Yazarların performans

kazançlarının temelinde yatan etken, verimli okuma için önbellek mekanizmasına sahip

GPU’nun doku ve sabit belleğinden yararlanmaları olmuştur. Bu uygulamadaki dezavantaj,

tüm veri kümesinin doku belleğe sığmasını gerektirmesidir.

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
28

 Bu zamana kadarki çalışmalarda k-means’in sadece 1 adımını paralelleştiren

uygulamaların aksine, Shalom ve ark. (2008) (Shalom, Dash, & Tue, Efficient K- Means

Clustering Using Accelerated Graphics Processors, 2008) algoritmanın tamamını GPU’da

uygulamaya çalışmışlardır. Ancak uygulamayı OpenGL ve gölgelendirici (shader)

programlar aracılığıyla kernelleri uyandırmak için GLSL kullanarak gerçekleştirmişlerdir.

GPU’nun çok-geçişli canlandırma ve çok-gölgelendirici yeteneklerini kullanmışlardır. Tüm

verileri dokularda saklayarak doku kullanımını maksimize edip gölgelendirici program

sabitleri kullanımını minimize etmişlerdir. Bu sayede, CPU ve GPU arasındaki veri

işlemlerini azaltmışlardır. K-means’in tüm adımlarını GPU’da uyguladıkları için iterasyonlar

boyunca verinin CPU’ya kopyasını tutuyormuş, böylece yarış durumu önlenmiş. Sonunda,

azaltma nesneleri ana (host) belleğe geri kopyalanıyormuş ve gerekirse global bir birleştirme

yapılıyormuş. Makalede deneysel çalışmalarda işlemlerin ne kadar süre aldığına yer verilse

de, elde edilen hızlanmaya dair bir bilgi belirtilmemiş. Ayrıca, yazarların çoğaltma yaklaşımı

büyük ölçekli veri kümeleri kullanıldığında ek yük getirebilmektedir. GPU’nun bellek

yapılarından verimli yararlanmak isteyen Böhm ve ark. (2009) (Böhm, Noll, Plant,

Wackersreuther, & Zherdin, Transactions on Large-Scale Data- and Knowledge-Centered

Systems I, 2009)’nın çalışmasında ise saklayıcılar da kullanılmıştır. Veri kümesi ve demet

merkezleri GPU'nun global belleğinde saklanmış.Bir veri noktasının demet atamasından

sorumlu olan her thread, verisini kendi saklayıcısına yüklüyormuş, sonra tüm merkezleri tek

tek saklayıcıya yükleyip verinin yüklendiği merkez ile arasındaki uzaklığı hesaplıyormuş.

Bu uzaklık, minimum uzaklıktan küçükse noktayı o demete atıyormuş. Yazarların bu

yaklaşımı, çok hızlı saklayıcı yapılarından faydalandıkları için performansa büyük katkı

getirmiştir. Deneylerde CPU uygulamasına göre küçük demet sayıları için 100 kata kadar ve

256 demet için 1000 kat hızlanma sağlanmış. Bu çalışma, CUDA’nın kullanıma imkan

sağladığı küçük bellek alanına sahip fakat çok hızlı saklayıcıların doğru yerde, doğru şekilde

kullanıldığında ne kadar kazanç getireceğini göstermektedir.

 Wu ve ark. (Mart 2009) (Wu, Zhang, & Hsu, GPU-Accelerated Large Scale Analytics,

2009) ise veri kümesini global belleğe yükledikten sonra satır-tabanlı düzenden sütun tabanlı

düzene çevirerek farklı bir yaklaşım denemişlerdir. Bu sayede, global bellek kullanımından

dolayı olası gecikmeleri minimize edecek verimli bütünleşik bellek okumalarına imkan

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
29

tanınmıştır. Bu düzen, k-means’in GPU uygulaması için ilk defa bu çalışmada

görülmektedir. Yazarlar k-means’in sadece her veri noktasına bir merkez atanan

prosedürünü GPU üzerinde paralelleştirmişler, diğer adımlar CPU’ya bırakılmıştır.

Makalede, kerneller yürütülürken değeri sabit kalacak verilerin doku ve sabit bellekte; çok

sık erişilecek verilerin ise paylaşılan bellekte tutularak verim alındığı vurgulanmıştır.

Deneylerde, tek çekirdek üzerinde çalışan MineBench’e göre ortalama 190 kat hızlanma elde

edilmiştir. Bir önceki çalışmada büyük demet sayısı için elde edilen verimin çok daha yüksek

olması, saklayıcılardan yararlanmanın ne kadar önemli olduğunu bir kez daha

göstermektedir. Aynı şekilde sütun tabanlı düzeni kullanan Zechner & Granitzer (2009)

(Zechner & Granitzer, 2009) çalışmasında veri, boyut ve demet sayısına getirilen

sınırlamaları kaldırmak için veriyi parça parça işleme yaklaşımı geliştirmiştir. CPU'da veri

noktaları thread sayısına bölünerek işlenecek parça sayısı bulunmuş. Her blok, 1 veya daha

çok parçanın işlenmesinden sorumluymuş. Bir thread, bloktaki diğer thread'lerden önce

bitirirse, bütünleşik bellek erişimi için diğer thread'leri bekliyormuş. Bloktaki thread'lerden

her biri, aynı merkezin bir bileşenini paylaşılan belleğe yüklüyormuş. Thread'ler, kendi veri

noktasının bileşenini global bellekten bütünleşik alıyormuş. Herhangi bir anda, bir bloktaki

tüm thread'ler, aynı merkeze uzaklığı hesaplıyorlarmış. Bir merkezi tüm boyutlarıyla

paylaşılan belleğe yüklemek, boyut sayısını kısıtlayacağından, yüklemeyi ve uzaklık

hesaplama işlemini parça parça yapmışlar. Her iterasyonda bir bloktaki thread sayısı kadar

merkezin bileşeni, paylaşılan belleğe yüklenmiş. Her bileşen için kısmi uzaklık hesaplanmış.

Tüm thread'ler, veri noktasına en yakın merkezi bulduğunda, merkezin etiketi global belleğe

yazılmış. Deneylerde CPU uygulamasına göre 43 kata kadar hızlanma sağlanmış. K-

means’in GPU uygulaması için ilk defa burada uygulanan parça işleme tekniği sınırları

kaldıran oldukça kullanışlı, önemli bir yöntem olsa da getirdiği ek yükler nedeniyle

hızlanma diğer çalışmalardan daha düşük olmuştur. Wu ve ark. (Mayıs 2009) (Wu, Zhang, &

Hsu, Clustering Billions of Data Points Using GPUs, 2009) da veri kümesine getirilen sınırı

ortadan kaldırmaya çalışmışlardır. GPU’nun belleğine sığmayacak kadar büyük veri

kümesiyle çalışan uygulamalar için önceki uygulamalarını (Wu, Zhang, & Hsu, GPU-

Accelerated Large Scale Analytics, 2009) genişletmişlerdir. Kullanılan akış tabanlı yaklaşım

da benzer şekilde veri kümesini parçalara bölmeye dayanıyormuş. Her iterasyonda sırayla

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
30

büyük bloklar işleniyormuş. Bir bloğun işlenmesi, bloğun GPU’ya transfer edilmesini; sütun-

tabanlı biçime dönüştürülmesini; her verinin demet üyeliğinin bulunmasını, bulunan

sonuçların CPU’ya gönderilmesini içeriyormuş. CUDA akışları, her blok üzerindeki

ilerlemeyi izlemek için kullanılıyormuş. Tüm çağrılar asenkronmuş. k merkezler sabit

bellekte tutulmuş.1 milyar verili bir veri kümesi kullandıkları deneylerde, 2 akışlı seçenek en

iyi çalışmış. Akış etkin işlem, tüm veri kümesinin GPU’nun belleğine sığdığı uygulamaya

göre ekstra transpose işlemi, kernel çalıştırma ve senkronizasyonun getirdiği ek yükten

dolayı 1.1 ila 2.5 kat arasında bir düşüş göstermiş. (Wu, Zhang, & Hsu, GPU-Accelerated

Large Scale Analytics, 2009)’teki uygulamalarında 1 kez transpose yeterliyken, burada her

parçanın her seferinde transpose edilmesi gerekmiş. Sabit belleğin yetmeyeceği durumlarda

doku bellek de kullanıldığında, program 2.2 kat yavaşlıyormuş. Merkezler sabit belleğe

sığdığında, 8 çekirdekli CPU versiyonuna göre 10 kattan çok hızlanma; doku bellek de

kullanıldığında 3 kat hızlanma sağlanmış. Ayrıca, (Che, Boyer, Meng, Sheaffer, & Skadron,

2008)’den 2-4 kat; (Fang, et al., 2008)’den 20-70 kat daha hızlıymış.

 Bai ve ark. (2009) (Bai, He, Ouyang, Li, & Li, 2009) ise demet merkezlerini güncelleme

adımını da GPU’da yapmışlar. Bu adıma geçmeden önce CPU’da demet etiketlerini sıralatıp

her demetin kaç veri noktası içerdiğini hesaplatmışlar. GPU’ya yüklenen bu verilere göre her

thread bir demetin yeni merkezini hesaplamakla sorumlu tutulmuş ve kendi demetinin veri

nesnelerini sürekli okuyarak işlemini gerçekleştirmiş. Bu sayede, her thread için her veri

noktasının sorumlu olduğu demete ait olup olmadığına tek tek bakması gerekmemiş. Bu da

bir warp'taki thread'ler arasında SIMD yapısının bozulmasıyla verimi düşüren thread

ayrılma durumu oluşmasını önlemiş. Bu sayede güncelleme işlemi çok hızlı bir şekilde

gerçekleşmiş; ancak CPU-GPU arası veri transferi yükü oluşmuştur. Deneylerde, CPU

tabanlı k-means’e göre yazarların GPU tabanlı uygulaması, sadece demetleme çalışmasına

bakıldığında 27 ila 56 kat; toplam çalışma zamanına göre 8 ila 14 kat hızlanma sağlamıştır.

Bu çalışma k-means’in GPU uygulaması için demet güncelleme adımında paralelizmi artıran

sıralama yaklaşımını ilk kez kullanması bakımından önemlidir. Yazarın thread ayrılmayı

engelleme yaklaşımını oldukça verimli olsa da ek yükler, tüm verinin global bellekte

tutularak GPU’nun çeşitli hızlı bellek yapılarından faydalanılmaması, global belleğe

erişimlerin sık olması ve bütünleşik olmaması performansın önceki çalışmalardan daha

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
31

düşük olmasıyla sonuçlanmıştır. Etiketleme adımının yanında merkez güncelleme adımını

da GPU ile paralelleştiren ve CPU’da sıralama yaklaşımını kullanan bir diğer çalışma Karch

(2010) (Karch, 2010)’ın yüksek lisans tez çalışmasıdır. GPU’da görüntü demetleme üzerine

odaklanan yazar, önceki çalışmadan farklı olarak etiketleme adımında her thread’in

senkronizasyonla bir merkezi paylaşılan belleğe yüklemesini ve bu merkezlerle sorumlu

olduğu piksel arasındaki uzaklığı hesaplamasını sağlamış. Ayrıca, merkez güncelleme

adımında da farklı olarak, her thread bloğuna bir demetin merkezini hesaplatmış. Global

bellekten blok boyutunca piksel okunuyormuş. Her thread,1 pikselin koordinatlarını (R,G,B)

paylaşılan bellekteki koordinat dizisine ekliyormuş. Her thread, kendi dizi elemanındaki

değerleri toplamak zorundaymış; çünkü yarış koşulları nedeniyle tüm thread'ler için bir

değişken kullanmak mümkün olmuyormuş. Bu ihtiyaçtan dolayı paralel azaltma

fonksiyonu, piksel koordinatlarını topluyormuş. Deneylerde CPU uygulamasına göre 50

kata kadar hızlanma sağlanmış. Bu çalışma GPU’nun paylaşılan bellek yapısından

yararlandığı önceki çalışmadan daha iyi performans kazancı elde etmiştir.

 Wu & Hong (2011) (Wu & Hong, 2011) ise k-means’in GPU uygulaması için ilk defa

üçgen eşitsizliği ilkesinden faydalanarak gereksiz uzaklık hesaplamalarını önleyen bir

yaklaşım izlemişlerdir. Sadece etiketleme adımının GPU ile hızlandırıldığı uygulamada,

geliştirilen CUDA-tabanlı hibrit algoritma, genel bir veri seti için üçgen eşitsizliğinin

kullanılıp kullanılmamasına duruma göre kendi belirliyormuş ve yük dengeleme

yapıyormuş. Ayrıca, yük dengeleme ve bellek bütünleştirme arasındaki ödünleşimi

incelemek için veri düzenlemesini yeniden ayarlayan bir teknik sunmuşlar. Deneylere göre,

hibrit CUDA algoritması, tek thread'li CPU-tabanlı versiyona göre k’nın küçük değerleri için

75 kat hızlıymış. Hibritleşme ek yük getirmesine rağmen, k’nın büyük değerleri için

performansı hibritleşmenin olmadığı yaklaşımla aynı oluyormuş, ölçeklenebilirlikte ise hibrit

yöntem daha iyiymiş. Bu çalışma, üçgen eşitsizliği kullanarak hesaplama sayısını azaltması

bakımından önemlidir, bu yöntem uzaklık hesabı gerektiren diğer demetleme

algoritmalarında da oldukça kullanışlı olacaktır.

 Veri demetleme algoritmalarının GPU kullanarak paralel bir şekilde uygulanmasını

sağlayan CUDA için C ile açık-kaynak kodlu bir kütüphane yazan Kohlhoff ve ark. (2011)

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
32

(Kohlhoff, M.H.Sosnick, Hsu, Pande, & Altman, 2011) çalışmalarına CAMPAIGN (Clustering

Algorithms for Massively Parallel Architectures Including GPU Nodes) ismini vermişler.

CAMPAIGN’de k-means, k-medoids, k-centers, hiyerarşik demetleme ve kendini-

düzenleyen harita olmak üzere 5 algoritmanın seri bir CPU referans versiyonu ve bir GPU-

hızlandırılmış versiyonu bulunuyormuş. Uzaklık ölçütü için öklid, manhattan ve chebyshev

seçeneklerini sunmuşlar. Makalede açık kaynak kodlu uygulamalarını isteyenlerin

indirebilecekleri bir link vermişler; bunun dışında kullandıkları yöntem ve tasarımlarıyla

ilgili hiçbir bilgi vermemişler. Deneylerde, CPU referans uygulamasına göre, k-means 69 kat,

k-medoids 102 kat, k-centers 178 kat, hiyerarşik demetleme 5 kat, kendini düzenleyen harita

ise 2 kat civarında bir hızlanma sunmuş. K-means’in neredeyse tüm adımlarını (ilklendirme

adımı hariç) GPU’da uygulayan (Shalom, Dash, & Tue, Efficient K- Means Clustering Using

Accelerated Graphics Processors, 2008), (Fang, et al., 2008)], (Bai, He, Ouyang, Li, & Li, 2009)

ve (Karch, 2010) çalışmalardaki gibi Jian ve ark. (2011) (Jian, et al., 2011) da k-means’i CUDA

ile paralelleştirmiştir; bu amaçla demet etiketi güncelleme, merkez güncellemeye merkez

hareketlenmesi bulma olmak üzere 3 kernel yazmışlar. Demet etiketi güncelleme kernelinde,

her thread1 veri noktasından sorumluymuş. Veri noktalarının boyut bölümleri ve k

merkezler bütünleşik şekilde paylaşılan belleğe yüklenmiş. Merkez güncelleme kernelinde,

geliştirdikleri paralel yüksek boyut azaltma planını uygulamışlar. Bu planda, bir verideki

farklı boyutlar bağımsızsa tüm verilerdeki aynı boyut, ayrı bir vektör olarak ele alınıyormuş

ve her thread bloğuna bir boyut vektörü veriliyormuş. 1 boyutlu azaltma için CUDA SDK’

daki ardışık adresleme azaltma seçilmiş. Son iterasyonda, yeni merkezler eski merkezlerden

çok uzaktaysa, hareketlenme olmuş demekmiş. Bunun için merkez hareketlenmesi bulma

kernelinde, öncelikle eski merkezler ile yenilerin arasındaki fark hesaplanıp, fark matrisine

atılıyormuş ve paralel yüksek boyut azaltma planı uygulanıyormuş. Deneylere göre CU-K-

means, küçük bir veri seti üzerinde (Fang, et al., 2008)’den 5 kat daha hızlıymış. Bu

çalışmada bütünleşik bellek okumalarına dikkat edilmiş; boyut azaltma tekniğiyle thread

paralelleştirme maksimize edilmiş ve paylaşılan belleği değiştirme maliyet önlenerek

performans kazancı elde edilmiştir. Benzer biçimde, Kohlhoff ve ark. (2012) (Kohlhoff,

Pande, & Altman, K-means for parallel architectures using all-prefix-sum sorting and

updating steps, 2012) da k-means’i tamamen GPU’da uygulamıştır. (Bai, He, Ouyang, Li, &

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
33

Li, 2009) ve (Karch, 2010) çalışmalarındaki gibi demet güncelleme adımından önce sıralama

yaklaşımı kullanılmıştır; fakat onlardan farklı olarak bu işlem GPU’da hesaplatılmıştır.

Çalışmada paralel-önek-toplamı tabanlı sıralama algoritması uygulanmıştır. (Wu, Zhang, &

Hsu, GPU-Accelerated Large Scale Analytics, 2009), (Zechner & Granitzer, 2009) ve (Wu,

Zhang, & Hsu, Clustering Billions of Data Points Using GPUs, 2009) çalışmalarındaki gibi

veri noktaları sütun-tabanlı; demet vektörleri satır-tabanlı düzende saklanmıştır. Demet

vektörleri, peş peşe tek tek işlenirken, veri vektörleri, niteliklere bölünmüştür. 4 yardımcı

kernel yazılmıştır. (1)Paralel veri azaltma kerneli, belleğin bir bölümünde saklanan kısmi

değerleri alıp tek bir sonuç değerine birleştirmektedir. (2)Tüm-önek-toplamı kerneli, bir çok

thread ile paylaşılan bellek üzerinde çalışan toplam bu kernel ile yerinde hesaplanmaktadır.

Bu kernel, thread'lere dağıtılmış veriden bir kısmının bir dizide toplanmasına karar

verildiğinde, istenen verileri tutan thread'lere, dizinin indislerini bildirmek için

kullanılmıştır. (3)Veri sıkıştırma kerneli, sıralanmamış veri noktaları içinden belirli bir demete

atanan veri noktalarını seçme gibi bir kriteri karşılayan alt kümeyi çıkarmada kullanılmıştır.

Burada komşu indisleri hesaplamak için tüm-önek-toplam kerneli kullanılmıştır. (4)Uzaklık

ölçütü kerneli, ölçütler arasında kolayca geçiş yapmak için ayrı bir kernel olarak yazılmıştır.

Vektörler bileşenlerine bölünerek sabit-uzunlukta segmentlerde işlenmiştir. Böylece

paylaşılan belleğin sabit-uzunluğu kullanılmıştır. Veri noktaları demetlere atanmalarına göre

sıralanırken, tüm noktaların yarısından fazlası sıralanmamışsa tam bir sıralama; aksi

takdirde önceki sıralamayı güncelleme uygulanmıştır. Sıralama sayesinde, zaman

karmaşıklığını azaltılmış ve bir warp içindeki thread'lerin hepsinin doluluğunu sağlanmış;

fakat sıralama yaparken tampon kullanıldığından alan gereksinimi neredeyse iki katına

çıkmıştır. Deneylerde, CPU uygulamasına göre 200 kata kadar hızlanma sağlanmıştır.

 K-means’in en yakın demet arama adımı için bir PC küme sistemi üzerinde 3 seviyeli

hiyerarşik paralel işleme öneren (Takizawa & Kobayashi, 2006)’deki çalışma gibi

Vaitheeshwaran ve ark. (2012) (Vaitheeshwaran, Nagwanshi, & Rao, 2012) da onlardan farklı

olarak uygulamayı OpenCL kullanarak geliştirmeyi önermiştir. Yazarlar deneylere göre bu

yaklaşımın oldukça performans kazancı sağladığını söylemişler; fakat makalede

uygulamalarının sözde koduna, deneysel çalışma detaylarına ve sonuçlarına ilişkin herhangi

bir bilgiye yer vermemiş, sadece önerilerini sunmuşlardır.

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
34

 Mevcut uygulamalardan farklı olarak veri boyutuna göre 2 strateji geliştiren Li ve

ark. (2013) (Li, Zhao, Chu, & Liu, 2013)’nın uygulamalarında veri kümesi küçükken

saklayıcılardan yararlanılırken, veri kümesi çok büyükken hesapsal yükün bellek erişimine

oranını yüksek tutmak için paylaşılan bellekten de yararlanılmıştır. Veri kümesi küçükken,

veri noktaları global bellekten saklayıcılara yüklenip o veri noktasına en yakın merkezi

bulma işlemi boyunca saklayıcılardan erişilmiştir. Global belleğe bütünleşik erişimler

yapılarak okuma gecikmesi azaltılmıştır. Yöntemin dezavantajı saklayıcı sayısıyla

sınırlanmasıdır. Veri kümesi büyükken, veri paylaşılan belleğe kare kare bölünerek

yüklenmiştir. Her veri noktası global bellekten 1 kez okunmuştur. Bu yöntemde, yığın

çatışmasını önlemek için bir yarı-warp’daki thread'ler için 16 sürekli adrese erişen

bütünleşik okuma benimsenmiştir. Yazarlar, uzaklık hesaplama işleminin matris çarpımı ile

aynı akışı paylaştıklarını fark etmişler. Veri noktalarını data[n][d], merkezleri centroid[d][k]

ve uzaklık sonuçlarını Result[n][k] matrisi olarak ifade etmişler ve 3 matrisi, 16x16 kare

matrislere bölmüşler. Her blok Result matrisindeki 2 kareyi hesaplıyormuş: SR[16][16x2]. SR

global bellekte uzaklıkları saklıyormuş. Her thread, SR’nin bir sütununu hesaplıyormuş.

Global bellekten verinin bir karesi, paylaşılan belleğe yükleniyormuş ve geçici bir uzaklık

hesaplanıyormuş, sonuç saklayıcıda tutuluyormuş. Merkezler sabit bellekte saklanıyormuş.

Yeni demet merkezinin bulunduğu işlemi, “böl ve yönet” stratejisiyle gerçekleştirmişler. Bu

yöntemde veriyi SM sayısına bağlı olarak gruplara ayırıp, her grubu azaltarak geçici

merkezleri alıyorlarmış, son demet merkezlerini CPU’da hesaplıyorlarmış. Büyük veri

kümeleriyle çalışırken, “böl ve birleştir” stratejisini kullanmışlar. Veri kümesini grup grup

yükleyip, sonra geçici sonuçları hesaplatıp, birleştirerek sonucu elde ediyorlarmış. Deneylere

göre, düşük boyutlu veri kümelerinde, [25]’den 3 ila 8 kat; [20]’dan 10 ila 20 kat; [22]’den 100

ila 300 kat daha hızlıymış. Yüksek boyutlu veri kümelerinde ise [20]’dan 4 ila 8 kat; [22]’den

10 ila 40 kat daha hızlıymış.

 K-means veri demetleme algoritması için GPU ile paralelleştirilmiş literatürdeki

uygulamalar burada sona ermektedir. Literatürdeki çalışmaları birbiriyle karşılaştırarak

yorum yapmak bizim açımızdan zor; çünkü elde edilen hızlanmalar bir çok faktöre bağlıdır.

Örneğin; bazı çalışmalar, sadece hızlandırdıkları adımın karşılaştırmasını sunarken, bir

kısmı uygulamanın tamamı için karşılaştırmasını sunmuştur. Ayrıca, her çalışmada

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
35

kullanılan veri kümesi, boyut sayısı, demet sayısı, toplam iterasyon sayısı farklılık

göstermektedir. Bunun dışında, karşılaştırma için temel aldıkları CPU uygulaması hepsinde

farklıdır. Dahası, yazarların çoğunluğu çalışmalarında sadece hızlanma katsayısına yer

verdiği, geçen süreyi belirtmediği için bir çalışmanın diğer bir çalışmayla karşılaştırılması

sağlıklı olmayacaktır. Fakat, bazı yazarlar çalışmalarını internette mevcut ve indirilebilir

kıldıkları için bir çok araştırmacının kendi uygulamasını bunlarla karşılaştırmalarına imkan

tanımıştır.

3.2. Hiyerarşik Birleştirici Demetleme (HAC) algoritması (Hierarchical agglomerative
Clustering Algorithm)

 Hiyerarşik birleştirici demetleme (kısaca HAC) algoritması, AGNES (İng.

AGglomerative NEsting) algoritması olarak da bilinir. AGNES algoritması, 1990 yılında

Kaufman ve Rousseeuw (Kaufman & Rousseeuw, Finding Groups in Data: An Introduction

to Cluster Analysis, 1990) tarafından sunulmuştur. HAC veya AGNES algoritmasında

(Voorhees, 1986) her nokta ayrı bir demet olarak başlar. Demetlerin birleştirilmesi

“dendogram” denilen ağaç-benzeri bir yapıda sonuçlanır.

 Genellikle hiyerarşik demetleme 4 temel adımda gerçekleştirilir (Zhang & Zhang,

2006):

(1) Tüm verilerin arasındaki uzaklığı hesapla ve benzerlik uzaklık matrisini oluştur.

(2) Birbirine en az uzaklıktaki r ve s demetlerini bul.

(3) r ve s demetlerini birleştir. Birleşmeden etkilenen tüm uzaklıkları yeniden

hesapla.

(4) Adım 2 ve 3'ü, toplam demet sayısı 1 olana kadar tekrarla.

 Zhang & Zhang (2006) (Zhang & Zhang, 2006) hiyerarşik demetlemenin GPU-tabanlı

bir uygulamasını gen ekspresyonu veri analizini hızlandırmak amacıyla

gerçekleştirmişlerdir. Nvidia CG grafik programlama dilini kullanan yazarlar, genelde mikro

dizi veri kümelerinin az boyutlu olmasını temel almışlar ve dokuların kısıtlı sayısı bu

uygulama için yeterli olmuş. Tek bir veriden tüm değerlerini doku adresleme mantığıyla 1

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
36

seferde alabilmişler. Uzaklık hesabında ise uzaklık matrisinin aktif kısmını kapsayan üçgen

bir pencere canlandırmışlar. Üçgen canlandırma, karşılık gelen her uzaklık hesabı için bir

parça (fragment) üretilmesini gerektirmiş. Deneylerde, CPU uygulamasına göre 2 ila 4 kat

hızlanma elde edilmiş. Bu çalışma veri boyutunun daha fazla olduğu veri kümelerine de

uyacak şekilde tasarlanmamıştır. Ancak bildiğimiz kadarıyla ilk defa hiyerarşik demetlemeyi

GPU ile hızlandırdığı için önemlidir. O dönemki kısıtlar altında performans kazancı fazla

elde edilememiştir. CUDA'nın ortaya çıkışıyla birlikte, yüksek boyutlu vektörleri de

demetlemek için Wilson ve ark. (2007) (Wilson, Dai, Jakupovic, & Meng, 2007) CUDA tabanlı

HAC algoritması gerçekleştirmişlerdir. Performansı, CPU üzerinde çalışan ticari

biyoinformatik demetleme uygulamalarıyla karşılaştırmışlar ve 10'dan 14 kata kadar

hızlanma elde etmişlerdir. Böylece, CUDA kullanmanın verimliliğini göstermişlerdir.

 Hiyerarşik birleştirici demetlemede (HAC) temel işlemlerden biri olan çift yönlü

(pairwise) uzaklık hesaplamayı Chang ve ark. (2008) (Chang, Jones, Li, Ouyang, & Ragade,

2008) CUDA aracılığıyla GPU'yu kullanarak hızlandırmaya çalışmışlardır. Çift yönlü

uzaklıklar için 2 CUDA algoritması sunulmuş. İlk CUDA kodunda, uzaklık hesabı için yarı-

matris kullanılmış. Her thread uzaklık matrisinin 1 satırından sorumluymuş ve bu satırı

paylaşılan belleğe yükleyip bloktaki diğer satırlara uzaklığını hesaplıyormuş. İkinci CUDA

kodunda, her thread uzaklık matrisinde 1 elemandan sorumluymuş. Bir thread uzaklık

matrisinin (i,j) elemanını hesaplarken, öncelikle i.veriyi paylaşılan belleğe yüklüyormuş.

(i,j+1), (i,j+2)… (i,j+15) elemanlarını hesaplayacak thread'lerin hepsi; paylaşılan belleğe

yüklenen i.verinin aynı kopyasını kullanıyorlarmış. Aynı şekilde, j. veri paylaşılan belleğe

yüklendiğinde de, (i+1,j), (i+2,j)… (i+15,j) elemanlarını hesaplayacak thread'lerin hepsi;

paylaşılan belleğe yüklenen j. verinin aynı kopyasını kullanıyorlarmış. Bu durum, paylaşılan

bellekte veri paylaşan thread bloğunun kare kullanılmasının avantajını ortaya koyuyormuş.

Bir bloktaki tüm thread'ler alt matrisleri paylaşılan belleğe yükledikten sonra, her thread

kendi kısmi öklid uzaklığını hesaplıyormuş. Sonra thread'ler senkronize edilip sonraki alt

matrise geçiliyormuş. Burada önemli bir nokta yazarların yığın çatışmasını azaltmak için

veriyi sütun tabanlı düzene çevirmeleridir. Bu sayede 16 kat çatışma azaltılmış. Deneylere

göre, CPU uygulamasına göre yazarların CUDA-1 uygulaması 4 ila 8 kat; CUDA-2 ise 20 ila

44 kat hızlanma sağlamış. Bu çalışmadaki ikinci yöntem, paylaşılan belleği verimli

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
37

kullanması, kare thread bloğu kullanması, yığın çatışmasını önlemesi etkili olmuş ve

performansa önemli katkılar getirmiştir.

 HAC algoritmasının bir kısmını GPU'da paralelleştiren çalışmalardan farklı olarak

Shalom ve ark. (2009) (Shalom, Dash, Tue, & Wilson, Hierarchical Agglomerative Clustering

Using Graphics Processor with Compute Unified Device Architecture, 2009) algoritmanın

tamamını tek bağlantı (İng. single link) kullanarak CUDA ile uygulamışlardır. Global bellek

daha az bellek yönetimi gerektirdiği gerekçesiyle paylaşılan bellekten çok global belleği

kullanmışlardır. GPU’da benzerlik yarı-matrisini hesaplatmışlardır. Benzerlik matrisi global

bellekte saklanmıştır. Her blok, benzerlik matrisinin bir kare alt matrisini hesaplamış; her

thread ise alt matristeki bir elemanı hesaplamıştır. Minimum uzaklık çiftlerini "cublasIsamin"

fonksiyonuyla sanal olarak bir geçişte belirlemişlerdir. Demetleri birleştirip yeni demet

vektörünü hesaplatmışlar, benzerlik yarı matrisini ve minimum uzaklık dizisini

güncellemişlerdir. Sonra demeti CPU’ya transfer etmişlerdir. Benzerlikleri güncelleme ve

demetleri birleştirme işlemi tek bir demet olana dek tekrarlanmıştır. Global bellekte 1

boyutlu dizi kullanmak hesapsal performansı önemli derecede arttırmış, sürekli bellek

adreslerine yazma ve okuma, işlemlerini daha verimli yapmıştır. Deneylere göre, CPU

versiyonuna göre 30 ile 65 kat hızlanma sağlanmış. Global bellek kullanmaları sebebiyle

nitelik sayısı 100’ü aşınca hızlanma çok hızlı bir şekilde düşmüştür. Bu çalışmaya çok benzer

olarak, Chang ve ark. (2009) (Chang, Kantardzic, & Ouyang, Hierarchical clustering with

CUDA/GPU, 2009) de HAC'i tamamen CUDA kullanarak uygulamışlardır. Çift yönlü

uzaklık matrisini hesaplamada önceki çalışmalarındaki (Chang, Jones, Li, Ouyang, &

Ragade, 2008)'deki CUDA-2 yaklaşımını izlenmiş; fakat burada sadece öklid uzaklığı

kullanılmamıştır. Tek bağlantı işlemini seri bir şekilde yürütüp her iterasyonu mümkün

olduğunca paralelleştirmişlerdir. Her thread çift yönlü uzaklık matrisinin 1 satırı için

minimumu bulmuştur. CUDA paralel azaltma (reduction) kullanılarak minimumlar matrisinin

minimumu bulunmuştur. En yakın demetler birleştirilip SANN özelliği kullanılarak diğer

demetlerin en yakın komşuları güncellenmiştir. Bu adımdaki kernelde, her thread bir

demetten sorumluymuş. Matrisin birleştirilen demetin uzaklık matrisindeki yeni minimumu

CUDA paralel azaltma kullanılarak bulunmuştur. Deneylere göre, CPU versiyonuna göre

öklid ölçütü için 33 kata kadar; manhattan ölçütü için 48 kata kadar; pearson korelasyon

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
38

katsayısı için 28 kata kadar hızlanma sağlanmıştır. Bu çalışma, daha dikkatli tasarımıyla

önceki çalışmaya göre daha ölçeklenebilirdir, yüksek veri boyutlarına sahip veri kümelerine

de uygundur. GPU'da HAC algoritmasının tamamen uygulayan bir başka çalışma da

Shalom & Dash (2011) (Shalom & Dash, Efficient Hierarchical Agglomerative Clustering

Algorithms on GPU Using Data Partitioning, 2011)'nın uygulamasıdır. Çalışmada HAC'in

gerektirdiği zaman ve bellek karmaşıklığını azaltan Kısmen Örtüşen Bölme (PoP) yöntemi de

kullanılmıştır. PoP yönteminde, veri p sayıda örtüşen hücreye bölünür. Kesişime “δ-bölgesi”

denilir. δ, bölme mesafesi veya deltasıdır. Her hücre, çekirdek bölgesini ve komşu δ-bölgeleri

içerir. Merkez ölçütü için, her demet, tek bir temsilci nokta ile gösterilir. Bir demetin temsilci

noktası, bir δ-bölgesine düşerse, etkilenen her hücre onu tutar; düşmezse sadece çekirdek

bölge onu tutar. PoP’un temel konsepti, iterasyonlarda en yakın çiftin diğer tüm hücrelerden

bağımsız her hücre için bulunması ve bunlardan genelde en yakın çiftin bulunmasıdır.

Genelde en yakın çift mesafesi δ’dan azsa, o zaman çift birleştirilir ve sadece kapsayıcı

hücrenin benzerlik matrisi güncellenir. En yakın çift veya birleştirilen demet bir δ-

bölgesindeyse, o zaman etkilenen hücrelerin de benzerlik matrisi güncellenir. Başlangıçta

δ’ya çok küçük bir değer, p’ye çok büyük bir değer verilir. Git gide δ %x arttırılıp, p %y

azaltılır. PoP klasik HAC’in gerektirdiği zaman ve bellek karmaşıklığını azaltır. Yazarlar,

PoP yapısını "90-10 ilişki" biçimine dayanarak, 2-boyutlu veriler için uygulamışlardır. HAC

algoritmasını GPU’da uygularken karşılaşılan kısıtlar şunlar olmuştur: hesaplamalarda

thread'lerin yetersiz kalması ve senkronizasyon gerektirmesi; geniş veri kümeleri için bellek

yetersizliği; küçük fakat hızlı paylaşılan belleğe karşı büyük fakat yavaş global bellek için

programlanabilirlik. PoP-destekli HAC uygulamasında, her PoP hücresi bir bloğa atanmıştır.

Her blok, bloktaki veri noktalarının birbirlerine uzaklıklarını hesaplamaktadır. Her thread,

verilen veri çiftinin aralarındaki mesafeyi bulmaktadır. Bloklarda her fonksiyonun eşzamanlı

başlatılması ve birleştirme operasyonu paraleldir. Thread'ler sırasıyla, uzaklık hesabı, en

yakın çiftin belirlenmesi, minimum uzaklık demet çiftinin güncellenmesi ve birleştirilmesi

fonksiyonlarını çalıştırmışlardır. Deneylerde, CPU versiyonuna göre, GPU'da çalışan PoP-

destekli HAC 2331 kat hızlanma sağlamıştır. 100000 verili veri kümesi kullanıldığında

GPU’da PoP-destekli HAC, GPU’da klasik HAC'e göre 400 kat daha az bellek gerektirmiştir.

Literatürdeki HAC'in en verimli GPU versiyonu budur.

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
39

 Önceki bölümde bahsi geçen CAMPAIGN isimli çalışmayı gerçekleştiren Kohlhoff ve

ark. (2011) (Kohlhoff, M.H.Sosnick, Hsu, Pande, & Altman, 2011) makalede hiyerarşik

demetleme için kullanılan yöntemi raporlamamışlar fakat uygulamanın indirilebileceği link

vermişler ve deneylere göre 5 kat hızlı olduğunuraporlanmıştır. Bu hızlanma mevcut

çalışmalara göre çok düşüktür.

3.3. Bulanık C-Means (FCM) demetleme algoritması (Fuzzy C-Means Clustering
Algorithm)

 Bulanık c-means (FCM) 1973 yılında Dunn (Dunn, 1973) tarafından sunulmuş ve 1981

yılında Bezdek (Bezdek, 1981) tarafından geliştirilmiştir. Bulanık demetlemede, veri

elemanları birden fazla demete ait olabilir. Her veri elemanı, bir üye değerleri kümesiyle

ilişkilidir.

 FCM algoritması 4 basit adım ile özetlenebilir (Pangborn, 2010):

(1) Rastgele M adet noktayı demet merkezi olarak seç.

(2) Her veri noktasının her demet için üyeliğini hesapla.

(3) Her demet için, üyeliği bu demete ağırlıklanmış noktalarını topla.

(4) Her demet merkezini demetin toplam üyeliğine bölerek yeniden hesapla.

(5) Durdurma kriterini kontrol et, sağlamadıysa adım 2’ye git.

 Harris ve ark. (2005) (Harris & Haines, 2005) GPU tabanlı FCM algoritmasının

uygulamasını OpenGL ve Nvidia'nın Cg gölgelendirici (İng. shader) dilini kullanarak

gerçekleştirmişlerdir. Demet üyeliklerinin üretilmesi ve güncellenmesi adımları, GPU'da bir

vektör güncelleme parça (İng. fragment) programı kullanılarak yapılmıştır. Deneylere göre,

CPU versiyonuna göre 2 kat hızlanma sunmuştur. Yazarların uygulamayı geliştirdiği

dönemde, donanım, parça programlar tarafından alınabilen doku sayısını kısıtlamaktaydı.

Bu durum verilerin sayısına sınır getirmiştir, uygulama boyut ve demet sayısı bakımından

ölçeklenebilir değildir. Anderson ve ark. (2007) (Anderson, Luke, & Keller, Analysis and

Design of Intelligent Systems using Soft Computing Techniques, 2007) benzer bir uygulama

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
40

geliştirmişlerdir; ek olarak bellek kısıtlarından kaçınmak için demet başına minimum doku

kullanmaya ve portatifliği artırmak için gölgelendirici (shader) programlarının yeniden

kullanımını maksimize etmeye çalışmışlardır. Ayrıca, mahalanobis ve GK uzaklık ölçütleri

kullanmışlardır; bu ölçütler kovaryans matrisi gerektirmiştir. Deneylere göre CPU tabanlı

uygulamaya göre 8’den 83 kata kadar hızlanma elde edilmiştir. Yazarlar bir sonraki

çalışmalarında Anderson ve ark. (2008) (Anderson, Luke, & Keller, Speedup of Fuzzy

Clustering Through Stream Processing on Graphics Processing Units, 2008) uygulamayı

öklid uzaklık ölçütünü kullanarak gerçekleştirmişlerdir. Burada C-means 6 aşamalı bir

geçişle uygulanmıştır. GPU P1 programı, her veri noktasının demet merkezlerine uzaklığını

hesaplamıştır. P2, bu uzaklıkları alıp yeni üyelik değerlerini hesaplamıştır. P3, üyelik

değerleri ile veri kümesinin nokta çarpımını gerçekleştirmiştir. P4, paylara azaltma; P5,

paydalara azaltma uygulamıştır. P6, P4 değerlerini P5'te hesaplananlara bölerek demet

merkezlerini güncellemiştir. Deneylerde CPU FCM versiyonuna göre 4 ila 88 kat arasında

hızlanma sağlanmıştır. Yine benzer bir çalışmayı Shalom ve ark. (2008) (Shalom, Dash, &

Tue, Graphics Hardware based Efficient and Scalable Fuzzy C-Means Clustering, 2008)

büyük sayıda boyut ve demete ölçekleyebilme amacıyla gerçekleştirmişlerdir. Fakat, bu

durum CPU'dan GPU'ya veri transferinin çok sık ve büyük miktarda olmasıyla performansı

kısıtlamasıyla sonuçlanmıştır. Yazarlar algoritmanın uzaklık hesaplamaları, üyelik

hesaplamaları, demet merkezlerinin hesabı gibi yinelemeli kısımlarını gölgelendirici

programlar kullanarak parça işlemcide çalıştırmışlardır. Uzaklık ve üyelik matrislerini

dokularda saklamışlardır. Deneylere göre, uygulama CPU uygulamasından 20’den 94 kata

kadar daha hızlıymış.

 Bu zamana kadar GPU tabanlı FCM uygulamalarında OpenGL, Cg, GLSL

kullanılırken CUDA'nın popülerliğinin artmasıyla birlikte Espenshade ve ark. (2009)

(Espenshade, Pangborn, Laszewski, & Roberts, 2009) çalışmalarında akış sitometri için

minimum tanımlayıcı uzunluk çıkarsama (MDL) ile bulanık c-means (FCM) demetleme

algoritmasının GPU tabanlı uygulamasını CUDA kullanarak geliştirmişlerdir. Uygulamada

tüm paralel işlemler tek kerneldedir. Bu sayede global bellek erişimlerinin sayısı minimize

edilmiştir ve bellek gereksinimi azaltılmıştır. Başlangıçta demet sayısı seçiminin sonucu çok

etkilemesine çözüm olarak FCM'e MDL framework'ünü entegre etmişlerdir. FCM

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
41

algoritmasındaki eşitlikler, her demet için tamamen bağımsız olduğu için CUDA ile bu

işlemler paralelleştirilmiştir. Uygulamada, FCM bir demet merkezi kümesine yakınsadıktan

sonra, MDL Q matrisi üretilmiş ve devreye Tabu Arama girmiştir. Hangi demetin dahil

edilmesi hangi demetin yok sayılması gerektiği tanımlanmıştır. Uygulamanın birkaç

problemi vardır. Birincisi bloklar veri paylaşamadıkları için üyelik hesabı paydası için

uzaklıklar yeniden hesaplanmaktadır. İkincisi, tek kernel olması thread başına çok fazla

saklayıcı kullanımı gerektirmiştir. Bu durum doluluğu düşürmüştür. Üçüncüsü, bütünleşik

olmayan çok fazla bellek okuması vardır. Dördüncüsü, geçici sonuçları tutmak için boyut

sayısıyla orantılı paylaşılan bellek gerekmiştir. Bu durum, boyut sayısı arttıkça blok başına

thread sayısının azaltılmasını gerektirerek doluluk azalmıştır. Deneylere göre, her FCM

iterasyonu için gözlenen en yüksek hızlanma 84.34 kat olmuştur.

 CUDA kullanarak akış sitometri için C-means veri demetleme algoritmasının birçok

GPU ile hızlandırılmasını Pangborn (2010) (Pangborn, 2010) yüksek lisans tez çalışmasında

gerçekleştirmiştir. Yazar, tek bir makine (düğüm) üzerinde birçok GPU kullanmıştır. Birçok

düğüm arasında iletişim için MPI; her düğümdeki birçok thread için OpenMP; GPU için

CUDA olmak üzere hibrit bir paralel ortam kullanmıştır. Yazar hesaplamayı 4 farklı CUDA

kerneline ayırmıştır. Tüm kernellerde GPU kaynaklarından tamamen yararlanmak için

demet sayısı en az GPU'daki çokişlemci (SM) sayısı kadar olmalıymış. Veri kümesi, demet

merkezleri ve uzaklık matrisi global bellekte saklanmıştır. Veri kümesi sütun tabanlı düzene

çevrilmiştir. Bu sayede, bütünleşik bellek okumaları sağlanmıştır. Host üzerinde veri

kümesi, tüm OpenMP host thread'leri arasında paylaşılan bellek olarak işaretlenmiştir.

Birçok cihazdan kısmi demet merkezlerini birleştirmek için host, her GPU'dan bir paylaşılan

bellek alanı ayırmıştır. UzaklıkMatrisi Kerneli: Her thread bloğu, öklid uzaklık matrisinin 512

elemanını hesaplamıştır (thread başına 1 eleman). Demet merkezleri GPU'nun paylaşılan

belleğinde önbelleklenmiştir. Tüm global bellek okumaları bütünleşik yapılmıştır. Üyelik

hesaplamalarında 0'a bölme hatasını (veri noktasının demet merkezine eşit olduğu durum)

önlemede koşullu dallanma koymamak için uzaklığa küçük bir 10-30 hata eklenmiştir. Üyelik

Kerneli: İkinci kernel, ilk kernelde üretilen uzaklık değerlerini kullanarak sütun tabanlı üyelik

değerleri matrisini üretmiştir. Üyelik denklemlerinin toplamındaki payda (bölen), tüm

demetler için aynı olduğundan nesne başına sadece bir kez hesaplanmıştır. Her blok üyelik

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
42

matrisinin 256 sütununu hesaplamıştır. Her thread, sorumlu olduğu veri noktasının

demetlere uzaklıklarını toplamıştır. Sonra her uzaklığı tekrar yükleyerek üyelik değerini

hesaplamıştır. Son üyelik değerleri, orijinal uzaklık matrisinde saklanmıştır. Böylece, bellek

gereksinimi yarıya düşürülmüştür. MerkezleriGüncelle Kerneli: Kernelde, demetSayısı/4 x

veriBoyutSayisi bloklu grid kullanılmıştır. Blok başına 4 demet merkezi hesaplanmıştır. Bu

grid, veri kümesinin global bellekten yüklenmesini 4 kat azaltmıştır. Bir veri elemanı her

thread için bir saklayıcıya yüklenmiştir. Her thread, 4 üyelik değeri üzerinde çalışıp yaptığı

hesabı paylaşılan bellekteki her demet merkezine eklemiştir. Tüm verilerin işlenmesinden

sonra, kısmi toplamlar tek bir değere azaltılmıştır. Sonraki küçük kernel, üyelik matrisini

demet sayısı uzunluklu vektöre azaltarak demet boyutlarını hesaplamıştır. Her GPU

denklemin hem paylarını hem paydalarını döndürmüş ve host, yeni demet merkezlerini

hesaplamak için tüm GPU'lardan sonuçları birleştirmiştir. Deneylerde, CPU referans

uygulamasına göre elde ettikleri hızlanma 106 kat olmuştur. Tesla-güçlendirilmiş bir süper

bilgisayar kullanıldığında 32 GPU ile tek bir CPU referans uygulamasına göre, yazarın GPU

uygulaması %85 paralel hızlanma verimliliği ve 2368 kat hızlanma göstermiştir.

3.4. K-medoids (PAM) demetleme algoritması (K-medoids Clustering Algorithm)

 K-medoids (PAM) algoritması, 1987 yılında Kaufman ve Rousseeuw (Kaufman &

Rousseeuw, Clustering by Means of Medoids in Statistical Data Analysis Based on the L1–

Norm and Related Methods, 1987) tarafından önerilmiştir. K-medoids algoritmasının

adımları şunlardır:

1. Demetleri temsil eden k tane rastgele nokta (medoid) seç.

2. Her noktayı en yakın demete ata.

3. Medoid olmayan rastgele bir nokta seç.

4. Seçilen nokta medoid olması durumunda toplam karesel hatadaki değişimi

hesapla.

5. Hesaplanan değişim 0’dan küçükse seçilen noktayı medoid yap.

6. Herhangi bir yakınsama kriteri karşılanana dek 4. adıma git.

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
43

 Demet sayısı k önceden belirlenir. PAM, sapan verilerden k-means algoritmasına

göre daha az etkilenir. PAM’da her iterasyon için karmaşıklık n veri noktası sayısı olmak

üzere O(k(n-k)2) olmaktadır.

 Espenshade ve ark. (2009) (Espenshade, Pangborn, Laszewski, & Roberts, 2009)

çalışmalarında bayes bilgi kriteri (BIC) ile k-medoids demetleme algoritmasının GPU ile

hızlandırılmış bir uygulamasını CUDA ve Tesla mimarisinden yararlanarak sunmuşlardır.

K-medoids algoritmasında demetleri bulanıklaştırmışlardır. Bayes bilgi kriteri (BIC) belirli

bir veri seti için en iyi demet sayısını belirlemek amaçlı k-medoids algoritmasına entegre

edilmiştir. Uzaklık ölçütü öklid kullanılmıştır. Deneylere göre, BIC ile k-medoids tabanlı

GPU uygulaması, CPU versiyonuna göre 7 kata kadar hızlanma sağlamıştır.

 Kohlhoff ve ark. (2011) (Kohlhoff, M.H.Sosnick, Hsu, Pande, & Altman, 2011)

çalışmalarında k-medoids için kullandıkları yöntemi raporlamasalar da uygulamanın

indirilebileceği bir link verip deneylere göre 102 kat hızlanma elde edildiği raporlamışlardır.

3.5. CAST demetleme algoritması (CAST clustering algorithm)

 CAST (İng. Clustering Affinity Search Technique) 1999 yılında Ben-Dor ve ark. (Ben-Dor,

Shamir, & Yakhini, 1999) tarafından geliştirilmiştir. CAST, biyolojik veri demetlemede

yaygın bir şekilde kullanılan hem bölünmeli hem yoğunluk tabanlı bir demetleme

algoritmasıdır.

 CAST, nesne benzerliğini saklamak için bir benzerlik matrisi hesaplamaya ihtiyaç

duyar. CAST, tüm nesnelerin uzaklıklarını saklamak için bir benzerlik matrisi ve bir birleşme

eğilimi (İng. affinity) eşik değeri giriş parametresine sahiptir. Algoritma şu şekilde çalışır: İlk

önce demetler için bir C kümesini ve demetlenmemiş nesneleri içeren bir U kümesini

ilklendirir. C'deki her demet için her nesnenin birleşme eğilimi hesaplanır. U'daki her nesne

için, nesne ile hedef nesne arasındaki benzerlik hesaplanır ve benzerlik değerleri, hedef

nesnenin birleşme eğilimi olarak toplanır. Eğer birleşme eğilimi, birleşme eğilimi eşik

değerine eşit veya daha büyükse, bu nesne, aktif demete eklenebilir ve U'da "demetlendi"

olarak işaretlenebilir. Aynı zamanda, demetteki her nesnenin birleşme eğilimi, nesne ile yeni

eklenen nesne arasındaki benzerliği ekleyerek güncelleyebilir. Eğer birleşme eğilimi,

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
44

birleşme eğilimi eşik değerinden küçükse, en düşük birleşme eğilimli nesne, bu demetten

kaldırılacaktır ve bu nesne U'da "demetlenmedi" olarak işaretlenir. Demetteki her nesnenin

birleşme eğilimi nesne ile kaldırılan nesne arasındaki benzerliği çıkartarak güncellenebilir.

Ekle ve çıkar işlemleri, değişiklik olmayana kadar tekrarlanır. Aktif demet için demetleme de

sonlanır. Algoritma, adımları tekrarlayarak yeni demet bulma için diğer demetlemeye başlar.

U nesnelerinin hepsi demetlendi olarak işaretlenince sonlanır (Lin & Lin, 2011).

 Lin ve Lin (2011) (Lin & Lin, 2011) makalede CAST demetleme algoritmasının iki

versiyonunu önermişlerdir: talep üzerine hesaplama CAST (kısaca COD-CAST) ve GPU ile

talep üzerine hesaplama CAST (kısaca COD-CAST-GPU). COD-CAST algoritması, büyük

miktarda nesneyi, çalışma zamanı bakımından daha verimli işleyebilen bir CAST

algoritmasıymış. COD-CAST-GPU algoritması ise COD-CAST'i hızlandırmak için GPU’dan

yararlanıyormuş. Yazarlar, CAST için benzerlik matrisi elde etme aşamasının çok zaman

tükettiğini belirterek, özellikle nesne sayısı çok iken performans üzerinde bir darboğaz

oluşturduğunu vurgulamışlar. Önerilen COD-CAST algoritmasının girişi, n nesneymiş (nxn

benzerlik matrisi değilmiş). Çok geniş bir veri kümesini demetlemek için CAST kullanırken,

genellikle tüm matrisi belleğe yüklenemiyormuş. Bu nedenle önceden benzerlik matrisini

hesaplamıyorlarmış gerektiğinde hesaplıyorlarmış. Öklid uzaklık ölçütü kullanılmış.

Önerilen COD-CAST-GPU algoritması ise COD-CAST için önerdikleri birleşme eğilimi eşik

değerini güncelleme fonksiyonunun GPU ile paralelleştirilmesini içeriyormuş. Deneylere

göre, veri sayısı az olduğunda önerilen algoritmaların hızlandırma kat sayısı çok az iken,

örneğin 128.000 veri olduğunda COD-CAST-GPU, CAST'ın çalışma zamanının sadece %7.7'si

kadar süre gerektiriyormuş.

3.6. K-centers demetleme algoritması (K-centers clustering algorithm)

 K-centers algoritmasında başlangıçta merkez 0 olarak gösterilen, rastgele bir nokta

başlangıç merkezi olarak seçilir. Sonra, aktif merkeze tüm N noktanın uzaklıkları hesaplanır

ve merkez 0'dan en uzaktaki nokta Y bulunur. Y noktası, bir sonraki iterasyon için yeni

merkez haline gelir. Sonra yeni merkeze tüm N noktanın uzaklıkları hesaplanır ve en yakın

merkezden daha yakın olup olmadığına bakılır. Bu durumda, noktaya bu yeni merkez

atanmış olur. Daha sonra, önceden bulunan tüm merkezlerden en uzak nokta bulunur. Bu

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
45

işlem k iterasyon veya bir minimum demet yarıçapı kriteri karşılanana dek tekrarlanır.

Demet merkezlerinin sayısı önceden belirtilir (Zhao, Sheong, Sun, Sander, & Huang, 2013).

 Kohlhoff ve ark. (2011) (Kohlhoff, M.H.Sosnick, Hsu, Pande, & Altman, 2011)

çalışmalarında k-centers için kullandıkları yöntemi raporlamasalar da uygulamanın

indirilebileceği bir link verilerek deneylere göre 178 kat hızlanma elde edildiği

raporlanmıştır.

 Zhao ve ark. (2013) (Zhao, Sheong, Sun, Sander, & Huang, 2013) moleküler dinamik

(MD) simülasyonlarının protein biçimleri üzerinde k-centers algoritmasının CUDA ile

hızlandırılan paralel uygulamasını sunmuşlardır. Uygulamada, bir merkezle başlamışlar ve

iteratif olarak önceden bulunan demet merkezlerinin hepsinden en uzaktaki noktayı bularak

k-demet merkezlerinin bir toplamına yaklaşmışlardır. İki protein biçimi arasındaki uzaklığı

hesaplamak için Theobald'ın dördey karakteristik polinom (QCP) yöntemini

uygulamışlardır. QCP yönteminin GPU uygulaması, hesaplama başına karışık tek ve çift

hassasiyetli ondalıklı sayı operasyonlarından yüz binlerce gerektiriyormuş. Uzaklık

hesaplamalarının toplam sayısını azaltmak amacıyla üçgen eşitsizliği ilkesinden

yararlanmışlardır. Fakat bu yol her iterasyonun başında merkezden merkeze uzaklıkları

hesaplama maliyeti getirerek ekstra bellek ve zaman almıştır. Üçgen eşitsizliği ek yükten

getirse de MD simülasyonlarında demetlemede üçgen eşitsizliğini sağlayan noktalar çok

olduğu için performansa katkısı çok olmuştur. Veri kümesini sütun-tabanlı düzende global

bellekte saklamışlardır; bu sayede thread’ler peş peşe bellekten okuma ve belleğe yazma

yapabilmişlerdir. Demet merkezlerini global bellekte saklamışlardır. Tüm merkezlerden en

uzaktaki noktayı bulmak için paralel bir azaltma kerneli uygulamışlardır. GPU'da

thread’lerin boş kalmasını en aza indirmek için tarama-tabanlı sıkıştırma kerneli

yazmışlardır. Bu kernelde, üçgen eşitsizliğini sağlamayan noktalar belirlenip bir diziye

sıkıştırılmıştır. Bu sayede thread ayrılma da önlenmiştir. Üçgen eşitsizliği tek başına veri

kümesinin demetlenmesini 2 kattan 17 kata kadar hızlandırmıştır. Üçgen eşitsizliği, seyrek

bölgelerle ayrılmış yoğun bölgeleri olan veri kümeleri üzerinde (yoğun veri kümesi) benzer

tarzda dağılmış veri kümelerinden (tekdüze veri kümesi) daha iyi performans sergileme

eğilimindeymiş. Yazarlar, makalede üçgen eşitsizliğinin yüksek boyutlu veri kümeleri

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
46

kullanılırken daha az verimli olduğunu gözlemlemiştir. Deneylere göre CPU uygulamasına

göre 42 kattan 100 kata kadar hızlanma sunmuştur. Yazarlar, özetle bellek erişim düzenlerini

optimize etmişler, GPU belleğinden bütünleşik okuma ve yazmalar yapmaya dikkat

etmişler, paralel azaltma uygulamışlar, uzaklık fonksiyonunu paralelleştirmişler, sıkıştırma

ile üçgen eşitsizliği uygulamışlardır.

3.7. DBSCAN demetleme algoritması (DBSCAN clustering algorithm)

 DBSCAN algoritması, Ester ve ark. (Ester, Kriegel, Sander, & Xu, 1996) tarafından

1996 yılında sunulmuştur. Algoritma Eps ve MinPts olmak üzere iki parametre gerektirir.

Eps, en büyük komşuluk yarıçapı, MinPts ise bir veri noktasının “çekirdek nokta” olması için

komşuluk bölgesinde bulunması gereken en az veri noktası sayısıdır. DBSCAN algoritması

öncelikle birtakım tanımlar verilerek anlatılmıştır.

 Tanım 1 : (Bir noktanın Eps komşuluğu) Bir p noktasının Eps komşuluğu

 ile tanımlanır. Tanımdaki fonksiyonu p ve q

noktaları arasındaki uzaklığı ifade eder.

 Tanım 2 : (Doğrudan yoğunluk erişilebilir) Eps ve MinPts koşulları altında, aşağıdaki

şartlar sağlanıyorsa p noktası q noktasından doğrudan yoğunluk erişilebilirdir:

1.

2. (q’nun çekirdek nokta olması koşulu)

 Tanım 3 : (Yoğunluk erişilebilir) Eps ve MinPts koşulları altında,

olmak üzere noktalar zinciri varsa ve bu zincirde noktası ’den doğrudan

yoğunluk erişilebilirse) p, q’dan yoğunluk erişilebilirdir.

 Tanım 4 : (Yoğunluk bağlantılı) Eps ve MinPts koşulları altında, hem p hem de q bir o

noktasından yoğunluk erişilebilirse p noktası q noktasına yoğunluk bağlantılıdır.

 Tanım 5 : (Demet) D veri kümesi ve C bir demet olmak üzere, Eps ve MinPts koşulları

altında C, D’nin boş olmayan ve aşağıdaki koşulları sağlayan bir alt kümesidir:

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
47

1. Eğer ve (Eps ve MinPts koşulları altında) p, q’dan yoğunluk erişilebilir ise,

2. (Eps ve MinPts koşulları altında) p, q’ya yoğunluk bağlantılıdır.

 Tanım 6 : (Gürültü) Epsi ve MinPtsi i=1,2,…,k koşulları altında C1,C2,…,Ck D veri

kümesinin demetleri olsun. D veri kümesinde herhangi bir Ci demetine ait olmayan noktalar

kümesi “gürültü” olarak tanımlanır, .

 DBSCAN algoritmasında rastgele bir noktadan başlanarak tüm noktalar kontrol

edilir. Eğer nokta, önceden bir demete eklendiyse işlem yapılmadan sonraki noktaya geçilir.

Aksi takdirde, noktanın komşuluğundaki noktalar bulunur. Komşu sayısı MinPts’den

küçükse gürültü olarak işaretlenir ve sonraki noktaya geçilir. Komşu sayısı MinPts’den

büyük veya MinPts’ye eşitse bir demet oluşturulur ve demete bu nokta ve komşuları eklenir.

Sonra önceden bir demete eklenmemiş her bir komşu için komşuluğu araştırılarak onun

komşuları bulunur. Komşuluğu araştırılan noktaların komşu sayıları MinPts’den büyük

veya MinPts’ye eşitse demete eklenir. Bu işlemler eklenecek nokta kalmayana dek devam

eder. Sonra veri kümesinden başka bir nokta seçilerek döngü tekrarlanır.

 Böhm ve ark. (2009) (Böhm, Noll, Plant, & Wackersreuther, Density-based clustering

using graphics processors, 2009) DBSCAN demetleme algoritmasının GPU tabanlı paralel bir

uygulaması CUDA-DClust’ı ve benzerlik bulmada bir indeks yapısı kullanan daha da

hızlandırılmış CUDA-DClust* versiyonunu sunmuşlardır. Uygulama, zincir kavramıyla

desteklenen paralel demet genişletmeye; hiyerarşik bir indeks yapısı kullanımıyla

hızlandırılabilen paralel en yakın komşu bulmaya; mikroişlemciler arasında verimli yük

dengelemeye dayanmaktadır. Doğrudan yoğunluk erişilebilirlik ilişkisinin geçişli kapalılık

hesaplaması zincir kavramıyla uygulanmıştır. Her SM bir demetin genişletilmesi için

ayrılmıştır. Birçok demet genişletilmesi, farklı başlangıç noktalarından farklı zincirler

aracılığıyla aynı anda başlatılmıştır. Genişletilecek tohum nokta paylaşılan belleğe

yüklenmiştir. Bir tohum noktası, çekirdek nesne özelliğini belirlemek ve onun komşularını

yeni potansiyel noktalar olarak işaretlemek için ele alındığında, tohum noktanın potansiyel

komşularını eşzamanlı işlemek için birçok thread üretilmiştir. Koordinatlar saklayıcılara

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
48

yüklenmiştir. Ana program, işlenmeyen hiç bir nokta kalmayana dek GPU üzerinde 3 kernel

başlatan bir döngüyü içermektedir: (1) CPU'dan GPU'nun global belleğine veri kümesi

transfer edilir. (2) Veri kümesinden rastgele seçilen noktalardan yeni zincirler oluşturulur.

(3) Demet Genişletme kerneli başlatılır. (4) Zincirlerin durumları GPU'nun global

belleğinden CPU'ya transfer edilir. (5) Gerekiyorsa YeniTohumlar kerneli başlatılır. (6)

Gerekiyorsa TohumYenidenDoldur kerneli başlatılır. (7) İşlenmemiş nesneler varsa 3.

adımdan devam edilir. (8) Demet-ID'leri GPU'nun global belleğinden CPU'ya transfer edilir.

Demet genişletme kerneli, CUDA-DClust'ın temel kernel metodudur ve çekirdek nokta

özelliğinin belirlenmesini ve demetlerin geçişli genişletmesini uygulamaktadır. Tohum

listesinin amacı, aktif demetin bir çekirdek nesnesi olduğu onaylanmış herhangi bir

nesnesinden doğrudan yoğunluk erişilebilir nesneler için bir bekleme kuyruğu sağlamaktır.

CUDA-DClust eşzamanlı çok sayıda zincirin demet genişletmesini uyguladığı için çoklu

tohum listelerine sahiptir. Alan problemi yaşanmaması için bir tohum listesinin sahip

olabileceği alan 1024 nokta ile kısıtlanmıştır. Zincirlerden biri bittiğinde, işlenmemiş bir

nesneden yeni bir zincir başlatılmıştır. İşlenmemiş nesne yoksa bir zincir bölünmüştür. Bu

sayede, sistemde çalışan neredeyse sabit sayıda thread’in hepsi aynı iş yüküne sahip olmuş

ve yük dengesi sağlanmıştır. CUDA-DClust'ın performansını geliştirmek için, nesnelerin

komşularını bulmayı sağlayan çoklu bir indeks yapısı önerilmiştir. CUDA-DClust* için

demetleme yöntemini başlatmadan önce verinin parçalara ayrılması ve sıralanması, önerilen

indeks yapısının kurulması gerekmiştir. İndeks kurulumu CPU'da uygulanmıştır. Veri

kümesinin yanında dizin de GPU'nun global belleğine transfer edilmiştir. Bir nesnenin

komşuları belirlenirken, thread kümesinin her biri veri kümesinin farklı bir parçası üzerinde

çalışmıştır. Deneylere göre, CUDA-DClust, indeks desteği olmadan CPU uygulamasına göre

10-15 kat; CUDA-DClust* indeks destekli CPU uygulamasına göre 3.5-15 kat hızlanma

sunmuştur. Sonraki makalelerinde Böhm ve ark. (2009) (Böhm, Noll, Plant, Wackersreuther,

& Zherdin, Transactions on Large-Scale Data- and Knowledge-Centered Systems I, 2009)

yine DBSCAN için GPU programlama modeline uyan bir dizin yapısı ve benzerlik

birleştirme yöntemi tanımlamışlar; fakat daha farklı bir şekilde uygulamayı geliştirmişlerdir.

DBSCAN'i paralel benzerlik birleştirme ile desteklemişlerdir. Çok boyutlu dizin yapısı, geniş

veri kümelerinde verilen bir sorgu nesnesine benzeyen nesneleri buluyormuş. Benzerlik

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
49

birleştirme yöntemi ise benzerlik bulmada kullanılıyormuş. CUDA kullanarak geliştirdikleri

GPU-destekli DBSCAN uygulamasında algoritmanın çekirdek nesne özelliğinin belirlenmesi

aşamasını ve doğrudan yoğunluk erişilebilirlik ilişkisinin geçişli kapalılığını hesaplayarak

demet genişletme aşamasını paralelleştirmişler. İlk aşamayı benzerlik birleştirme ile

desteklemişler. Çekirdek nesne özelliğini kontrol etmek için, her noktanın € komşuluğu

içindeki nesnelerin sayısı hesaplanıyormuş. Bir (x,q) nesne çifti birleşme koşulunu

sağladığında, nesnelerin sayısını arttırmada sadece q noktasının sayacını arttırmışlar. q

noktası, thread’le ilişkilendirilen nokta olduğu için sayıcı[threadID] senkronize edilmemiş

sıradan inc() operasyonu ile güvenli bir şekilde arttırabiliyormuş. Bu yöntem, sadece 1 sayacı

arttırdığı için tüm nesneleri kontrol gerektirmiş. Uygulamada, veri kümesini ve veri noktası

adedi büyüklüğündeki sayıcı matrisi global bellekte saklanmış. Her noktadan bir thread

sorumluymuş. Her thread sorumlu olduğu noktayı global bellekten kendi saklayıcısına

kopyalıyormuş. İteratif bir şekilde global bellekten bir veri noktası x, paylaşılan belleğe

yükleniyormuş. Senkronize edildikten sonra bloktaki thread’ler x veri noktasıyla, sorumlu

oldukları veri noktasının arasındaki mesafeyi hesaplıyorlarmış ve epsilon'dan küçük eşit

olup olmadığını kontrol ediyorlarmış. Şart sağlanırsa, thread’in sorumlu olduğu noktanın

sayıcısı inc() ile 1 arttırılıyormuş. Demet genişletme için doğrudan yoğunluk erişilebilirlik

ilişkisinin geçişli kapalılığını hesaplamak gerekiyormuş. Geçişli kapalılığı hesaplamada

Floyd-Warshall'ın GPU'da yüksek derece paralel versiyonu kullanılmış. Deneylere göre,

GPU destekli DBSCAN, CPU versiyonuna göre 80 katı aşkın hızlanma sağlamış.

 Çok büyük veritabanlarında DBSCAN kullanırken daha iyi bellek ölçeklenebilirliğine

imkân tanıyan bir iyileştirme öneren Thapa ve ark. (2010) (Thapa, Trefftz, & Wolffe, 2010) ise

GPU tabanlı DBSCAN programını CUDA kullanarak uygulamışlardır. Uygulamada,

çekirdek nokta tespit edildiğinde Eps komşuluk noktalarının her biri bir kuyruğa

atılıyormuş ve sırasıyla onların komşularının Eps uzaklığı içine düşüp düşmediği kontrol

ediliyormuş. Kuyruktaki her nokta boyunca ilerleyip, demetteki her çekirdek noktadan

yoğunluk erişilebilir olan tüm noktaları bularak algoritma bir demeti kurmaya başlıyormuş.

Herhangi bir noktanın Eps komşuluğundaki komşularını bulmak için calcRow() kernelini

yazmışlar. calcRow(), noktalar arasındaki uzaklıkları belirlemek için GPU üzerinde

processPoint() kernelini çağırıyormuş. calcRow() fonksiyonu tarafından hesaplanan noktalar,

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
50

bitişiklik matrisi ile temsil edilmiş. Bitişiklik matrisi i ve j noktaları birbirine bitişikse (Eps

veya daha az uzaklıktaysa) '1'; değilse (aralarındaki uzaklık Eps'den büyükse) '0'

içeriyormuş. Yazarlar, bitişiklik matrisini bir kerede hesaplamak için herhangi bir anda

birden çok veri noktasının diğer noktalarla karşılaştırılması paralelleştirmişler. Makalede iki

GPU uygulaması yer almış: ilk GPU uygulaması ve yeni GPU uygulaması (M-GPU). İlk GPU

yaklaşımında, her thread’e bir veri noktası veriliyormuş. Bu veri noktasının, veri

kümesindeki diğer tüm noktalara karşı karşılaştırması hesaplanıyormuş. n adet eşzamanlı

çalışan karşılaştırmaların her birinde nokta sırayla veri kümesindeki diğer noktalara karşı

karşılaştırılıyormuş. Bu yaklaşımının bellek gereksinimi O(n2) mertebesindeymiş. M-

GPU’da, bir noktanın veri kümesindeki diğer noktalarla karşılaştırılması eş zamanlı

yapılıyormuş; sonraki her nokta kendi karşılaştırmalar kümesini uygulamak için sırasını seri

bir şekilde bekliyormuş. Bu yaklaşımın avantajı bitişiklik matrisinin sadece bir satırına

ihtiyaç duyması ve böylece bellek talebini O(n) mertebesine azaltmasıymış. calcRow() bir kez

tamamlandığında, sonuçlanan dizi satırı ve komşuların sayısının toplamı, cihaz belleğinden

host belleğe kopyalanıyormuş. Bu bilgi, expandCluster() tarafından demeti genişletmek için

kullanılıyormuş. İki GPU uygulaması da, orijinal seri versiyona göre 2-3 kat daha hızlı

çalışmış. İlk GPU yaklaşımı, büyük veri setleri için M-GPU’dan biraz daha uzun

sürüyormuş.

3.8. EM (Expectation Maximization) demetleme algoritması (Expectation Maximization

clustering algorithm)

 EM algoritması her demeti bir olasılık dağılımı ile ifade eder. EM algoritması, E ve M

adımlarından oluşur. E-adımında önceki iterasyondan Gauss model parametreleri

kullanılarak her veri noktası için demet üyelikleri hesaplanır. Başlangıçta tahmini model

parametreleri kullanılır. Her veri belli bir olasılık dağılımına göre demete atanır. M adımında

yeni üyelikler kullanılarak parametreler güncellenir. Her EM aşamasından sonra sadece tek

bir demet kalana dek veya belli bir demet sayısına ulaşana dek en benzer iki demet

birleştirilir (Pangborn, 2010).

 Kumar ve ark. (2009) (Kumar, Satoor, & Buck, 2009) EM demetleme algoritmasının

GPU ile paralelleştirilmiş hızlı bir uygulamasını CUDA kullanarak sunmuşlardır. Yazarlar,

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
51

önce algoritmayı basit bir seviyeye ayrıştırıp her seviyedeki veri paralelliğini belirleyip

hızlandırmışlardır. Son aşamada güncelleme denklemlerini matris dönüşümleri olarak ifade

etmişlerdir. Her iterasyon için gereken matrislerin hesabını yapan 6 kernel yazmışlardır.

Yazarlar kernellerde 6-11 arasında saklayıcı kullanmışlardır. Tüm matrisler global bellekte

sütun tabanlı düzende saklanmıştır. Bu sayede, veriler bütünleşik bellek okumalarıyla

paylaşılan belleğe yüklenmiştir. Deneylere göre, uygulama CPU uygulamasına göre 164 kat

daha hızlı çalışmıştır. Çalışmada bloklara eşit iş dağıtımı yapılarak yük dengelemeye dikkat

edilmiştir. Böylece bazı çekirdeklerin boşta kalıp performansı kötü etkilemesine engel

olunmuştur. Yazarlar, kovaryans matrislerinin diyagonal olduklarını varsaymış; ancak bu

durum boyutların istatistiksel olarak birbirinden bağımsız olmalarına imkan

tanımamaktadır. Gauss karışım modelleriyle EM veri demetleme algoritmasının

uygulamasını yapan bir başka çalışmada Pangborn (2010) (Pangborn, 2010) farklı olarak

GPU'larla donatılmış bir PC küme sistemi kullanmıştır. Uygulamada, giriş verileri global

bellekte sütun-tabanlı düzende saklanmıştır. Bu sayede, bütünleşik bellek okumalarına

imkan sağlanmıştır. Veri kümesi GPU'lara eşit olarak bölünerek iş yükü dağıtılmıştır.

Uygulama kök düğümdeki ana sistemin (İng. host) model parametrelerini ilklendirmesiyle

başlamıştır. Her host thread, veri kümesinin kendi bölümünü ve ilgili GPU’ya başlangıç

gauss model parametrelerini kopyalamıştır. E-adımı 2 kernele bölünmüştür. E-Adım1, bir

demete ait bir veri noktasının log-olasılığını hesaplamakta ve ağırlıklandırmaktadır,

parametreleri paylaşılan bellekte önbelleklemektedir. E-Adım2, tüm demetlerde üyelik için

ağırlıklandırılmış her olasılığı bulanık bir olasılığa çevirmektedir. M adım, her denklem için

bir kernel olmak üzere 3 CUDA kerneline bölünmüştür. Çok GPU’lu uygulamada kernel

kovaryans yerine her eleman için toplam varyansı hesaplamaktadır. Host her GPU’dan

kısmi sonuçları topladıktan sonra varyansı demet boyutuna bölmekle sorumludur. Üç M-

adım kernelinden sonra kovaryans matrisine çeviren, demet olasılıklarını hesaplayan, E-

adımındaki tüm olasılık hesaplamaları tarafından paylaşılan bir sabiti hesaplayan başka bir

kernel başlatılmaktadır. EM aşaması tamamlandıktan sonra karışım modelindeki en benzer

iki demet, kök düğümün master thread’i tarafından birleştirilmektedir. Deneylerde, CPU

referans uygulamasına göre 73 kat hızlanma elde edilmiştir. 128 GPU'lu Tesla-güçlendirilmiş

süper bilgisayar kullanıldığında %72 verimlilik ve 6286 kat hızlanma elde edilmiştir.

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
52

3.9. Sürü doküman demetleme algoritması (Flocking document clustering algorithm)

 Doküman demetleme problemi tabanlı sürü (İng. flocking) yönteminde zaman

karmaşıklığı n2'dir. Sürü modeli, bir varlık sürüsünün hareketini taklit etme için biyolojik

olarak esinlenmiş hesapsal bir modeldir. Kuş ve balık sürülerinde görüldüğü gibi grup

hareketini temsil eder. Her birey, diğerleriyle herhangi bir iletişim olmaksızın sadece

sürüdeki komşu üyelere ve çevresel engellere bağlı olarak az sayıda basit kurala göre

davranırlar. Craig Reynolds'ın sürü modelinde 3 basit yönetim kuralı vardır (Cui, Charles, &

Potok, 2012):

1) Ayrılma: Komşularla çarpışmayı önlemek için yönetim.

2) Hizalanma: Ortalama rota ve komşuların süratiyle eşleşmeye göre yönetim.

3) Birleşme: Komşuların ortalama pozisyonuna göre yönetim.

 Zhang ve ark. (2011) (Zhang, Mueller, Cui, & Potok, 2011) doküman demetleme

problemi tabanlı sürü uygulamasını CUDA-destekli GPU'larla donatılmış bir küme

bilgisayar üzerinde gerçekleştirmişlerdir. Yazarlar, iki temel probleme odaklanmışlar. İlk

olarak, doküman demetleme algoritmalarında doküman benzerliğini saptamada

yararlanılan dokümanların TF-IDF vektörlerini hesaplamayı, ikinci adımda ise TF-IDF-

benzeri benzerlik ölçütüne dayanarak bir seferde en az 1 milyon dokümanı demetlemeyi

hedeflemişlerdir. Çoklu-Tür Sürü (MSF) simülasyonu uygulamışlardır. TF-IDF kavramı

herhangi iki doküman arasındaki benzerliği ölçmek için kullanılmaktadır. Yazarlar, küme

uygulamalarına daha uygun frekans-ters esas frekans (TF-ICF) denilen yeni bir terim

ağırlıklandırma planı önermişlerdir. TF-ICF, işlenilen doküman koleksiyonları içindeki diğer

dokümanlardan terim frekans bilgisi gerektirmiyormuş ve örneklemeyle ICF tablosunu

önceden oluşturuyormuş. Sürü simülasyonunun temeli komşuluk bulmaymış. Komşuluk

bulma için sanal simülasyon alanını dilimlere bölmüşler. Her düğüm, sadece aktif dilimde

bulunan dokümanları ele almış. Düğümden düğüme mesajlarla doküman pozisyonları

iletilmiş. Her iterasyonda doküman pozisyonlarının güncellenmesinden sonra tüm

dokümanlar geçiş yapan, komşu ve iç doküman olmak üzere sınıflandırılmış. Yazarlar, doküman

vektörlerini, TF-ICF tablosunda her kelimenin indeksine göre sıralı bir dizide saklamışlar. Bu

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
53

veri yapısı minimum bellek kullanımı sağlamış. İki dokümanın benzerliğini hesaplamak için

bir kernel yazılmış. Her thread bloğu, 1 doküman çifti almış. Doküman vektörleri eşit bir

şekilde bloktaki thread'lere bölünmüş. Her thread, atanan her TF-ICF değeri için diğer

doküman vektörünün aynı indeksli girdi içerip içermediğini belirliyormuş. İkili (İng. binary)

arama uygulanıyormuş. Her iterasyonun başlangıcında, her thread, komşuluk yapan, geçiş

yapan dokümanların pozisyonlarını ve vektörlerini elde etmek için komşularına iki mesaj

veriyormuş. Sonra, her iç doküman ve geçiş yapan doküman için belirli bir aralık içindeki

komşu dokümanlarını arayan bir komşu bulma fonksiyonu devreye giriyormuş. Tüm

komşular bulunduğunda, aktif thread'e ait ve onların saptanan komşularına ait

dokümanların benzerlikleri hesaplanıyormuş. Sürü kurallarının uygulandığı sonraki adımda

doküman pozisyonlarını güncellemek için benzerlik ölçümleri kullanılmış. Deneylerde, GPU

kümeleri CPU kümelerinden 30'dan 50 kata kadar üstün performans sergilemiş.

 Cui ve ark. (2012) (Cui, Charles, & Potok, 2012) doküman demetleme problemi

tabanlı sürü uygulamasını CUDA ile hızlandırmışlardır. Reynold'un sürü modelindeki 3

kural tüm bireylerin tek bir sürüye dönüşmesiyle sonuçlandığı ve yazarlar doğadaki iki veya

daha fazla farklı tür sürülerine dönüşmeyi taklit için yeni bir Çoklu Tür Sürü (MSF) modeli

sunmuşlar. Bu amaçla, sürü modelindeki kurallara 4. bir kural -nitelik benzerlik kuralı-

eklemişler. Buna göre bir birey aynı niteliklere sahip bireylere yakın kalmaya çalışırken farklı

niteliklere sahip bireylerden uzak duruyormuş. Dokümanlara bireyler gibi davranılıyormuş

ve demetlerken MSF modeli kullanılıyormuş. GPU tabanlı doküman sürü algoritması için 2

kernel yazmışlar. İlk kernel, her doküman çiftine bir thread veriyormuş (toplamda n2 thread)

ve onlar arasındaki uzaklığın komşuluk içinde olup olmadığını belirliyormuş. Aralarındaki

uzaklık eşikten küçükse global bellekteki kosinüs benzerlik matrisine göre doküman

karşılaştırma yapılıyormuş. Uzaklık değeri yeterince küçükse dokümanlar benzer farz edilip

dokümanlar sürü arkadaşı kabul ediliyormuş. Benzer dokümanlar ayrılma, birleşme ve

hizalanma kurallarını kullanarak; benzemeyen dokümanlar sadece ayrılma kuralı kullanarak

rotalarını belirliyorlarmış. Popülasyon üzerinde etkisi olan her doküman hesaplanınca, ikinci

kernel çalışıyormuş. İkinci kernel, n thread üretiyormuş, her thread bir dokümanın rotasını ve

pozisyonunu güncelliyormuş. Burada, simülasyona rastgelelik eklenmiş, hareket

hesaplamalarının %15'i rastgeleymiş. Sisteme rastgele eleman ekleme, dokümanların diğer

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
54

sürü arkadaşlarının araştırmasındaki çözüm uzayını uygun bir şekilde araştırmasını

sağlıyormuş. İkinci kernel çalışmayı bitirdiğinde, bir nesil sonlanarak sıradaki başlıyormuş.

Uygulamada, GPU'nun global belleğinden sık okumalar yapılmış. Hızlı erişim için bazı

doküman terimleri paylaşılan bellekte tutulmuş. Deneylerde, 1000 dokümanlı GPU

uygulaması CPU versiyonundan yaklaşık 60 kat hızlı çalışmış. 1000 dokümandan sonra

performans neredeyse doğrusal bir şekilde düşmüş. Bu durum popülasyon büyüdükçe

global bellek erişim gecikmesinin artışından kaynaklanmıştır.

4. Sonuç (Conclusion)

 Algoritmaların GPU ile güçlendirilmiş versiyonlarını uygulamak için araştırmacılar,

ele aldıkları algoritmaların çok zaman tüketen adımlarını belirleyip paralelleştirilebilir olup

olmadıklarını incelemişlerdir. Paralelleştirilebilir bölümler, GPGPU arayüzünün kısıtlarına,

sağladığı esnekliklerine, bellek yapılarına, işlemler için sunduğu avantaj ve dezavantajlara

bağlı tasarlanmış ve performansı artıracak yaklaşımlar uygulanmıştır.

 Literatürdeki çalışmalara bakarak veri demetleme algoritmalarının performansını

CUDA kullanıldığında maksimize etmek için dikkat edilmesi gerekenleri sıralarsak:

 Veriyi parçalayarak, boyutlarından bölerek hızlı, küçük belleklerden yararlanmak.

 Global bellek kullanılırken bütünleşik bellek okumaları yaparak gecikmeyi azaltmak.

 Thread ayrılmayı engellemek için dallanmaları azaltmak, gerekirse GPU’da sıralama

yaparak, bir warp'taki tüm thread'lerin aynı komutu çalıştırmalarını sağlamak.

 Thread bloklarına eşit iş dağıtarak yük dengelemeyi sağlamak.

 Çok sık erişilecek küçük verileri saklayıcılarda tutmak.

 Thread başına kullanılacak saklayıcı sayısını dikkatli belirlemek.

 Sadece okuma amaçlı kullanılacak verileri sabit bellekte, yetmiyorsa doku bellekte tutarak

bunların hızlı önbelleklenebilir mekanizmasından faydalanmak.

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
55

 Veri, boyut, demet sayısını sınırlandırmamak için parçalara bölerek işleme; boyut azaltma

gibi teknikler kullanmak.

 Hesaplama sayısını azaltmayı sağlayan üçgen eşitsizliği gibi ilkelerden faydalanmak.

 Verileri GPU’da bütünleşik okumaya uyan sütun-tabanlı biçime dönüştürmek.

 CPU'nun verileri transfer edebileceği sistemlerin bant genişliği sınırlı olduğu için çok

gecikmeli olan CPU'dan GPU'ya veri transferlerini en aza indirmek.

 Doluluğu sağlamak için kernellerde blok boyutunu 32'nin katı olarak seçmek.

 Paylaşılan belleğin kullanımında yığın çatışması oluşmamasını sağlamak.

 Yarış koşullarını (yazmadan-önce-okuma, okumadan-önce-yazma gibi) önlemek için

thread senkronizasyonu yapmak ve çağrıları dikkatlice yerleştirmek.

 Kernellerin verimli çalışması için grid, blok ve thread sayısını dikkatli belirlemek.

 Veri demetleme algoritmalarının GPU ile hızlandırılmış versiyonlarının geliştirilmesi

son 5-6 yılda ağırlık kazanmıştır. Konuyla ilgili GPU versiyonu geliştirilmemiş demetleme

algoritmalarına örnek CLARA-CLARANS, BIRCH, CURE, ROCK, CHAMELEON, OPTICS,

DENCLUE, TURN, STING, CLIQUE verilebilir. Ayrıca DBSCAN, EM ve CAST GPU

versiyonu mevcut fakat daha fazla geliştirmeye açıktır.

KAYNAKLAR

AMD "Close To Metal" Technology. (2012, Aralık). AMD "Close To Metal" Technology.
http://www.amd.com/us/press-releases/Pages/Press_Release_114147.aspx adresinden
alınmıştır

Anderson, D., Luke, R., & Keller, J. (2007). Analysis and Design of Intelligent Systems using Soft
Computing Techniques. P. Melin, O. Castillo, E.G.Ramírez, J. Kacprzyk, & W.Pedrycz (Dü).
içinde Springer Berlin Heidelberg.

Anderson, D., Luke, R., & Keller, J. (2008). Speedup of Fuzzy Clustering Through Stream Processing
on Graphics Processing Units. IEEE Transactions on Fuzzy Systems, 16(4), 1101-1106.

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
56

Bai, H., He, L., Ouyang, D., Li, Z., & Li, H. (2009). K-Means on commodity GPUs with CUDA. 2009
World Congress on Computer Science and Information Engineering (CSIE 2009), (s. 651-655). Los
Angeles, California USA.

Beckmann, N., Kriegel, H., Schneider, R., & Seeger, B. (1990). The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles. Proc. ACM SIGMOD Int. Conf. on Management of
Data, (s. 322-331). Atlantic City, New Jersey, USA.

Ben-Dor, A., Shamir, R., & Yakhini, Z. (1999, Ekim). Clustering Gene Expression Patterns. Journal of
Computational Biology, 6(3/4), 281-297.

Bezdek, J. (1981). Pattern Recognition with Fuzzy Objective Function Algoritms. Kluwer Academic
Publishers Norwell, MA, USA.

Böhm, C., Noll, R., Plant, C., & Wackersreuther, B. (2009). Density-based clustering using graphics
processors. CIKM '09: 18th ACM conference on Information and knowledge management, (s. 661-
670). Hong Kong, China.

Böhm, C., Noll, R., Plant, C., Wackersreuther, B., & Zherdin, A. (2009). Transactions on Large-Scale
Data- and Knowledge-Centered Systems I. A. H. and J. Küng, & R. Wagner (Dü). içinde
Springer Berlin Heidelberg.

BrookGPU. (2012, Aralık). BrookGPU. http://graphics.stanford.edu/projects/brookgpu/index.html
adresinden alınmıştır

C++ AMP (C++ Accelerated Massive Parallelism). (2012, Aralık). C++ AMP (C++ Accelerated Massive
Parallelism). http://msdn.microsoft.com/en-us/library/vstudio/hh265137.aspx adresinden
alınmıştır

Cao, F., Tung, A., & Zhou, A. (2006). Scalable Clustering Using Graphics Processors. WAIM 2006: 7th
International Conference on Advances in Web-Age Information Management, (s. 372-384). Hong
Kong, China.

Chang, D., Jones, N., Li, D., Ouyang, M., & Ragade, R. (2008). Compute pairwise euclidean distances
of data points with GPUs. Proceedings of the IASTED International Symposium on Computational
Biology and Bioinformatics (CBB 2008). Orlando, Florida, USA.

Chang, D., Kantardzic, M., & Ouyang, M. (2009). Hierarchical clustering with CUDA/GPU. PDCCS'09:
Proceedings of the ISCA 22nd International Conference on Parallel and Distributed Computing and
Communication Systems, (s. 7-12). Cambridge, Massachusetts, USA.

Che, S., Boyer, M., Meng, J., Sheaffer, D. T., & Skadron, K. (2008, Temmuz). A performance study of
general-purpose applications on graphics processors using CUDA. Journal of Parallel and
Distributed Computing, 68(10), 1370-1380.

Che, S., Meng, J., Sheaffer, J., & Skadron, K. (2007). A Performance Study of General Purpose
Applications on Graphics Processors. GPGPU'07: First workshop on general purpose processing on
graphics processing units. Northeastern University, Boston, MA.

Corporation, N. (2012). Nvidia Cg. Nvidia Cg.
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html adresinden alınmıştır

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
57

CUDA™ (Compute Unified Device Architecture) Zone. (2012, Aralık). CUDA™ (Compute Unified
Device Architecture) Zone. https://developer.nvidia.com/category/zone/cuda-zone adresinden
alınmıştır

Cui, X., Charles, J., & Potok, T. (2012, Eylül). The GPU Enhanced Parallel Computing for Large Scale
Data Clustering. Future Generation Computer Systems, In Press, Corrected Proof.

Dunn, J. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-
Separated Clusters. Journal of Cybernetics, 3, 32-57.

Espenshade, J., Pangborn, A., Laszewski, G., & Roberts, D. (2009). Accelerating Partitional Algorithms
for Flow Cytometry on GPUs. 2009 IEEE International Symposium on Parallel and Distributed
Processing with Applications, (s. 226-233). Chengdu, Sichuan, China.

Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise. 2nd International Conference on Knowledge Discovery and
Data Mining (KDD-96).

Fang, W., Lau, K., Lu, M., Xiao, X., Lam, C., Yang, P., . . . Yang, K. (2008). Parallel Data Mining on
Graphics Processors. Tech. rep., HKUST-CS08-07.

Farivar, R., Rebolledo, D., Chan, E., & Campbell, R. (2008). A Parallel Implementation of K-Means
Clustering on GPUs. PDPTA'08: International Conference on Parallel and Distributed Processing
Techniques and Applications, (s. 340-345). Las Vegas, Nevada.

Hall, J., & Hart, J. (2004). GPU Acceleration of Iterative Clustering. A. Lastra, M. Lin, & D. Manocha
(Dü.), 2004 ACM Workshop on General Purpose Computing on Graphics Processors. içinde Wilshire
Grand Hotel, Los Angeles, California.

Harris, C., & Haines, K. (2005). Iterative Solutions using Programmable Graphics Processing Units.
FUZZ '05: The 14th IEEE International Conference on Fuzzy Systems, (s. 12-18). Reno, NV.

Jian, L., Wang, C., Liu, Y., Liang, S., Yi, W., & Shi, Y. (2011, Ağustos). Parallel data mining techniques
on Graphics Processing Unit with Compute Unified Device Architecture (CUDA). Journal of
Supercomputing, 1-26.

Karch, G. (2010). GPU-based acceleration of selected clustering techniques. Master's thesis, Silesian
University of Technology, Faculty of Automatic Control, Electronics and Computer Science,
Gliwice, Poland.

Kaufman, L., & Rousseeuw, P. (1987). Clustering by Means of Medoids in Statistical Data Analysis Based on
the L1–Norm and Related Methods. (Y. Dodge, Dü.) Reports of the Faculty of Mathematics and
Informatics. Delft University of Technology.

Kaufman, L., & Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to Cluster Analysis.
Hoboken, New Jersey: John Wiley \& Sons, Inc.

Kohlhoff, K., M.H.Sosnick, Hsu, W., Pande, V., & Altman, R. (2011, Haziran). CAMPAIGN: an open-
source library of GPU-accelerated data clustering algorithms. Bioinformatics, 27(16), 2321-2322.

Kohlhoff, K., Pande, V., & Altman, R. (2012, Ağustos). K-means for parallel architectures using all-
prefix-sum sorting and updating steps. IEEE Transactions on Parallel and Distributed Systems,
IEEE Early Access Articles.

AJIT-e: Online Academic Journal of Information Technology
2013 Spring/Bahar – Cilt/Vol: 4 ‐ Sayı/Num: 12
DOI: 10.5824/1309‐1581.2013.2.002.x

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
58

Kumar, N., Satoor, S., & Buck, I. (2009). Fast Parallel Expectation Maximization for Gaussian Mixture
Models on GPUs Using CUDA. HPCC'09: 11th IEEE International Conference on High
Performance Computing and Communications, (s. 103-109). Seoul, Korea (South).

Li, Y., Zhao, K., Chu, X., & Liu, J. (2013, Mart). Speeding up k-Means algorithm by GPUs. Journal of
Computer and System Sciences, 79(2), 216–229.

Lib Sh - Embedded Metaprogramming Language. (2012, Aralık). Lib Sh - Embedded Metaprogramming
Language. http://libsh.org/ adresinden alınmıştır

Lin, K., & Lin, C. (2011). A fast CAST-based clustering algorithm for very large database. Proceedings of
2011 International Conference on System Science and Engineering (ICSSE), (s. 420-424). Macau,
China.

Liu, Z., & Ma, W. (2008). Exploiting Computing Power on Graphics Processing Unit. CSSE'08:
International Conference on Computer Science and Software Engineering, 02, s. 1062-1065. Wuhan,
China.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations.
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, (s. 281-297).
the Statistical Laboratory, University of California, Berkeley, Calif.

Microsoft DirectX. (2012, Aralık). Microsoft DirectX. http://msdn.microsoft.com/en-
gb/library/windows/apps/hh309467.aspx adresinden alınmıştır

Nvidia. (2012). GPU Hesaplama Nedir? GPU Hesaplama Nedir? http://www.nvidia.com.tr/object/gpu-
computing-tr.html adresinden alınmıştır

NVIDIA. (2012, Kasım). NVIDIA CUDA Programming Guide | PG-02829-001_v5.0. NVIDIA CUDA
Programming Guide | PG-02829-001_v5.0.
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf adresinden alınmıştır

OpenCL™ (Open Computing Language) Zone. (2012, Aralık). OpenCL™ (Open Computing Language)
Zone. http://developer.amd.com/resources/heterogeneous-computing/opencl-zone/
adresinden alınmıştır

OpenGL (Open Graphics Library). (2012, Aralık). OpenGL (Open Graphics Library).
http://www.opengl.org/ adresinden alınmıştır

Pangborn, A. (2010). Scalable Data Clustering for Flow Cytometry using GPUs. Master's thesis, The Kate
Gleason College of Engineering at Rochester Institute of Technology, Rochester, New York.

Shalom, S., & Dash, M. (2011, Ekim). Efficient Hierarchical Agglomerative Clustering Algorithms on
GPU Using Data Partitioning. 12th International Conference on Parallel and Distributed
Computing, Applications and Technologies, (s. 134-139).

Shalom, S., Dash, M., & Tue, M. (2008). Efficient K- Means Clustering Using Accelerated Graphics
Processors. DaWaK'08: 10th International Conference on Data Warehousing and Knowledge
Discovery, (s. 166-175). Turin, Italy.

Shalom, S., Dash, M., & Tue, M. (2008). Graphics Hardware based Efficient and Scalable Fuzzy C-
Means Clustering. AusDM 2008: The Australasian Data Mining Conference, (s. 179-186). Glenelg,
South Australia.

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74
59

Shalom, S., Dash, M., Tue, M., & Wilson, N. (2009). Hierarchical Agglomerative Clustering Using
Graphics Processor with Compute Unified Device Architecture. 2009 International Conference
on Signal Processing Systems (ICSPS 2009), (s. 556-561). Singapore.

Takizawa, H., & Kobayashi, H. (2006). Hierarchical parallel processing of large scale data clustering on
a PC cluster with GPU co-processing. Journal of Supercomputing, 36(3), 219-234.

Temizel, A. (2011). CUDA ve OpenCL Temelleri. Hesaplamalı Bilimlerde GPU Teknolojileri ve Genel
Amaçlı GPU Programlama Semineri, (s. 59). ODTÜ Enformatik Enstitüsü Ural Akbulut Amfisi,
Ankara.

Thapa, R., Trefftz, C., & Wolffe, G. (2010). Memory-efficient implementation of a graphics processor-
based cluster detection algorithm for large spatial databases. 2010 IEEE International Conference
on Electro/Information Technology (EIT). Normal, IL, USA.

The Compute Shader Technology (DirectCompute). (2012, Aralık). The Compute Shader Technology
(DirectCompute). http://msdn.microsoft.com/en-us/library/ff476331.aspx adresinden alınmıştır

Vaitheeshwaran, V., Nagwanshi, K., & Rao, T. (2012, Mart). Multicore Processing for Classification
and Clustering Algorithms. IJCA Proceedings on National Conference on Innovative Paradigms in
Engineering and Technology (NCIPET 2012), ncipet, s. 20-24.

Voorhees, E. (1986). Implementing agglomerative hierarchical clustering algorithms for use in
document retrieval. Information Processing and Management, 22(6), 465-476.

Wilson, J., Dai, M., Jakupovic, E., & Meng, F. (2007). Supercomputing with toys: Harnessing the power
of NVDIA 8800GTX and Playstation 3 for bioinformatics problems. CSB 2007: Computational
Systems Bioinformatics Conference, (s. 387-390). University of California, San Diego, USA.

Wu, J., & Hong, B. (2011). An Efficient k-Means Algorithm on CUDA. IEEE International Parallel \&
Distributed Processing Symposium (s. 1740-1749). IEEE.

Wu, R., Zhang, B., & Hsu, M. (2009). Clustering Billions of Data Points Using GPUs. UCHPC-MAW'09:
Proceedings of the combined workshops on UnConventional high performance computing workshop
plus memory access workshop, (s. 1-6). Ischia, Italy.

Wu, R., Zhang, B., & Hsu, M. (2009, Mart). GPU-Accelerated Large Scale Analytics. Tech. rep., HP
Laboratories Technical Report.

Zechner, M., & Granitzer, M. (2009). Accelerating K-Means on the Graphics Processor via CUDA.
INTENSIVE 2009: The First International Conference on Intensive Applications and Services, (s. 7-
15). Valencia, Spain.

Zhang, Q., & Zhang, Y. (2006, Nisan). Hierarchical clustering of gene expression profiles with graphics
hardware acceleration. Pattern Recognition Letters, 27(6), 676–681.

Zhang, Y., Mueller, F., Cui, X., & Potok, T. (2011, Şubat). Data-intensive document clustering on
graphics processing unit (GPU) clusters. Journal of Parallel and Distributed Computing, 71(2),
211-224.

Zhao, Y., Sheong, F., Sun, J., Sander, P., & Huang, X. (2013, Ocak). A Fast Parallel Clustering
Algorithm for Molecular Simulation Trajectories. Journal of Computational Chemistry, 34(2), 95-
104.

