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ÖZET Veri demetleme algoritmaları, arama; spam, saldırı tespiti; hücre, gen, doküman analizi; 
moleküler dinamik simülasyonlarının biçimlerinin analizi gibi uygulamalar için oldukça 
önemlidirler. Veri demetleme algoritmaları için birçok araç geliştirilmiştir; ancak günümüzde 
teknolojinin hızla gelişmesiyle toplanan veri miktarı git gide artmaktadır. Veri miktarının 
artması, analizin neticesini olumlu etkilese de mevcut veri demetleme araçları, büyük-ölçekli 
veri kümeleriyle çalışan uygulamaların gereksinimlerini hız bakımından karşılayamaz hale 
gelmişlerdir. Veri demetlemede hızın rolü, veri madenciliği araştırma topluluğunun bir süredir 
ilgi alanındadır. Araştırmacılar, çeşitli optimizasyon tekniklerinden, veri yapısı 
tasarımlarından, CPU'da paralelleştirme tekniklerinden ve PC küme sistemi kullanımı gibi 
yöntemlerden yararlanmaktadırlar. Fakat son zamanlarda düşük maliyet ile yüksek performans 
sunan yeni bir yaklaşım tüm ilgiyi üzerine çekmiştir: Genel Amaçlı GPU Programlama 
(GPGPU). GPU’ların yüksek paralel hesaplama gücü ve grafik kartlarındaki gelişimin CPU’ya 
oranla daha hızlı hızlanması, aslında grafik canlandırma ve oyunlar için yoğun matematiksel 
hesaplamalar yapmak üzere tasarlanan grafik kartlarından genel amaçlı programlar için de 
yararlanmayı söz konusu hale getirmiştir. Bu makalede, GPGPU yaklaşımıyla veri demetleme 
algoritmalarının performansını artıran çalışmalar incelenmiş, özetlenmiş, avantajlarından ve 
eksik yanlarından bahsedilmiştir. Sonuç olarak, bu yaklaşımının üstünlüğü göz önünde 
bulundurularak konuyla ilgili bilime katkı sağlanabilecek açık alanlar verilmiş ve incelenen 
çalışmalardan elde edilen GPGPU yaklaşımıyla uygulama geliştirirken dikkat edilmesi gereken 
hususlar ortaya konulmuştur. 
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ABSTRACT Data clustering algorithms are quite important for applications such as search; spam, attack 
detection; cell, gene, document analysis; analysis of conformations of molecular dynamics 
simulations. Many tools are developed for data clustering algorithms. However, today 
technology is improving rapidly so that collected data amount grows more and more. 
Although increased data amount affects the result of analysis positively, when current data 
clustering tools work with large scale datasets, they don't meet the requirements of such that 
applications in terms of speed. Data mining research community is interested in the rol of 
speed on data clustering for a while. Researchers take advantage of methods such as various 
optimization techniques, data structure designs, parallel techniques on CPU, using PC 
cluster systems. However, recently a new approach which offers low cost and high 
performance, attracts all attention: General Purpose GPU Programming: (GPGPU). Through 
high parallel computing power of GPUs and more rapid development of graphics carts than 
CPUs, it has become to benefit graphics carts, which design to do intensive mathematical 
computations, for general purpose programs. In this paper, we investigate works that increase 
performance of data clustering algorithms with GPGPU approach, summarize them, mention 
advantages and disadvantages of these works. In conclusion, considering the advantages of 
this approach, prospected areas in this matter that could contribute to the science are given 
and particular points in developing the application by GPGPU approach were exhibited from 
the outcomes of verified practices. 

 

Keywords: CUDA; GPU for acceleration; general purpose programming (GPGPU); graphic processor 
unit (GPU); parallel computing; data clustering 

 

 

 



 
GPU Hızlandırmalı Veri Demetleme Algoritmalarının İncelenmesi – N. M. ÇETİN, M. HACIÖMEROĞLU 

 

1. GİRİŞ  

 1980’li yıllarda GPU (grafik işlemci birimi) geliştirme çabaları IBM ve Intel’in 

elindeydi. 1990’lı yıllarda ise S3 Grafik, NVIDIA ve ATI gibi sadece grafik kartı geliştirmeye 

yönelen firmalar doğdu. Bu yıllarda 2 boyutlu donanımsal hızlandırma yaygınlaştı ve 

OpenGL (OpenGL (Open Graphics Library), 2012) grafik programlama kütüphanesi 

kullanıma sunuldu. Böylece grafik işlemede yeni bir döneme girildi. 2000’li yıllara 

gelindiğinde ise GPU'nun hesaplama gücü çok artmıştı. Gerçek zamanlı, yüksek tanımlı 3 

boyutlu grafikler için doymak bilmeyen piyasa talebi sebebiyle GPU'lar bir evrim 

geçirmiştir. Günümüzde GPU'lar yüksek hesapsal güce, çok çekirdekli işlemciye ve çok 

yüksek bellek bant genişliğine sahip; programlanabilir; yüksek derece paralel; çok thread’li 

hale gelmişlerdir. Şekil 1.1 ve Şekil 1.2 GPU'ların yıllara göre gelişen durumunu CPU 

(merkezi işlemci birimi) ile karşılaştırarak göstermektedir (NVIDIA, 2012).  

  

Şekil 1.1 CPU ve GPU için saniyedeki 
ondalıklı sayı işlemleri karşılaştırması 

(NVIDIA, 2012) 

Şekil 1.2 CPU ve GPU bellek bant genişliği 
karşılaştırması (NVIDIA, 2012) 

 

 Görüldüğü gibi grafik kartlarındaki gelişim CPU’ya oranla çok daha hızlı 

hızlanmaktadır. Aslında grafik canlandırma ve oyunlar için yoğun matematiksel 

hesaplamalar yapmak üzere tasarlanan grafik kartlarının yüksek paralel hesaplama gücü 

onlardan genel amaçlı programlar için de yararlanmayı söz konusu hale getirmiştir. 
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 Genel amaçlı bilimsel ve mühendislik uygulamalarını hızlandırmak için GPU'nun 

CPU ile birlikte kullanılması yaklaşımına "Genel Amaçlı GPU Programlama veya Hesaplama", 

kısaca "GPGPU" denir. GPGPU, uygulamanın hesapsal yoğun kısımlarını paralel bir 

biçimde GPU'da, kalan kısımları ise CPU üzerinde çalıştırmayı önerir. CPU'lar seri işleme 

için optimize edilmiş birkaç çekirdekten oluşurken GPU'lar yüksek derecede paralelizm için 

tasarlanmış küçük ve etkili binlerce çekirdekten meydana gelir. Bu nedenle, CPU ve GPU 

güçlü ve verimli bir kombinasyon olmaktadır (Nvidia, 2012).  

 GPU'lardan genel amaçlı programlar için yararlanmak için Nvidia Cg (Corporation, 

2012) ve OpenGL gölgelendirici (İng. shader) dili gibi grafik API’leriyle (Uygulama 

Programlama Arayüzü) genel amaçlı uygulamalar gerçekleştirilmeye çalışılmıştır. Ancak, 

GPU mimarilerinin ve programlama modellerinin CPU’dan çok farklı olması nedeniyle 

grafik API’lerinde genel bir problemi ifade etmek ve CPU için yazılan bir kodu uyarlamak 

oldukça zordur. Gelişmelerin artışıyla birlikte daha kullanışlı arayüzler tasarlanmıştır: Lib 

Sh (Lib Sh - Embedded Metaprogramming Language, 2012), Close to Metal (AMD "Close To 

Metal" Technology, 2012), BrookGPU (BrookGPU, 2012), DirectCompute (The Compute 

Shader Technology (DirectCompute), 2012), OpenCL (OpenCL™ (Open Computing 

Language) Zone, 2012), C++ AMP (C++ AMP (C++ Accelerated Massive Parallelism), 2012), 

CUDA (CUDA™ (Compute Unified Device Architecture) Zone, 2012). Bunlardan en önde 

gideni Nvidia'nın CUDA çözümüdür. Lib Sh, Close to Metal, BrookGPU arayüzleri uzun 

süredir aktif geliştirmede değildirler. DirectCompute, Windows Vista ve 7 altında GPU’da 

genel amaçlı hesaplamayı destekleyen bir API’dir. OpenCL ise CPU, GPU, DSP (sayısal 

sinyal işlemci) ve diğer işlemcileri içeren heterojen platformlarda çalıştırmak üzere program 

yazmak için bir çatı (İng. framework) niteliğinde, halen geliştirilen bir açık standarttır. 

OpenCL’de programlama CUDA’ya göre daha güç ve daha düşük performanslıdır; fakat 

heterojen ortamlarda veya farklı platformlarda çalışmak için iyi bir çözümdür (Temizel, 

2011). C++ AMP, veri paralel uygulamaları donanım hızlandırıcılara devrederek performansı 

artırmaya yardımcı olmak için tasarlanmıştır.  
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 Makalede, ikinci bölümde GPU mimarisi ve CUDA programlama hakkında bilgi 

verilecek, üçüncü bölümde konuyla ilgili literatürdeki çalışmalara değinilecek, son bölümde 

ise elde edilen sonuçlar sıralanarak konuyla ilgili açık alanlar belirtilecektir. 

2. GPU MİMARİSİ ve CUDA  

 Kasım 2006'da Nvidia, yeni bir birleştirilmiş boruhattı (İng. pipeline) ve 

gölgelendiririci mimarisine sahip CUDA destekli ilk kartını (GeForce 8800 GTX) tanıttı. 

CUDA’nın diğer teknolojilerden daha fazla dokümantasyona sahip olması, NVIDIA’nın hızlı 

performanslı ürünleri, C-benzeri sentaks, kolay kullanım ve düşük maliyet gibi sebepler 

araştırmacıların uygulamalarını CUDA ile geliştirmeyi tercih etmelerine sebep olmuştur. 

Günümüzde Adobe Creative Suite ve Mathematica gibi yoğun veri hesaplama içeren 

uygulamaların CUDA ile donanım hızlandırmalı versiyonları geliştirilmiştir. 

 CUDA destekli kartlar donanımsal olarak her biri 8 SP (İng. Stream Processor - akış 

işlemci) içeren bir dizi SM'den (İng. Stream Multiprocessor - akış çokişlemci) meydana gelir. 

Örneğin; GeForce GT630M her biri 8 çekirdekli 12 SM'ye sahiptir (toplamda 96 eşzamanlı 

çalıştırma çekirdeği vardır). SM'ler tek komut çok thread (SIMT) mimarisine sahiptir. 

Herhangi bir saat döngüsünde her SP aynı komutu farklı veriye işleyerek çalıştırır. Her SM, 

Şekil 1.3'de görüldüğü gibi 4 farklı tür yerleşik belleğe sahiptir:  

Saklayıcı (İng. Register): Her SP için 32-bit yüksek hızlı saklayıcılar dizisi vardır. 

Paylaşılan bellek: Her SM, tüm SP'leri tarafından paylaşılan, hızlı, küçük bir miktar (SM 

başına 16 KB) paylaşılan bellek içerir. 

Sabit ve doku önbellek : Her SM, GPU üzerindeki tüm SP'ler tarafından paylaşılan, sadece 

okunabilir sabit ve doku önbelleğe sahiptir.  
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Şekil 1.3 Bir CUDA destekli cihazdaki bellek alanları 

 Yerel bellek ve global bellek gibi yerleşik olmayan bellekler genelde 400'den 600 saat 

döngüsüne kadar varan uzun erişim gecikmelerine sahiptir. En büyük bellek alanına global 

bellek sahiptir. SM'ler global bellek aracılığıyla iletişim kurabilirler. 

 CPU'larda yerleşik kaynakların önemli bir kısmı, genel amaçlı hesaplama, dallanma, 

senkronizasyon, pipelining ve önbellekleme için büyük komut kümelerini çözmeye tahsis 

edilmiştir. Bu yüzden ondalıklı sayı hesaplamaları için kullanılabilir kaynaklar sınırlıdır. 

GPU'larda ise kaynakların çoğunluğu veri işlemeye tahsis edilmiştir. GPU mimarisi çok 

thread'li yapıdadır. Çok çekirdekli büyük paralel mimarinin üst seviyesinde, thread'ler bir 

grid'e organize olurlar. Grid, 2 boyutlu bloklar kümesi içerir. Bir blok tek bir SM üzerinde 

çalışır ve global olarak diğer bloklarla senkronize edilemez. Blok içindeki thread'ler, bir SM 

içindeki farklı çekirdeklere (SP) tahsis edilirler. Bir bloktaki tüm thread'lerin kendi 

saklayıcıları vardır ve az yük getiren bir bariyerle aynı işlevi gören thread senkronizasyon 

fonksiyonu vardır. Thread'ler warp'lara organize olurlar. Warp, 32 paralel thread'den oluşan 

ve her SM'nin zamanlanma birimi olan yapıdır. Bir warp bir anda bir komut çalıştırır, bu 

yüzden sadece warp'taki 32 thread'in hepsi aynı çalıştırma yoluna sahipken tam verimliliğe 

ulaşılabilir. Bu durum iki önemli sonuç doğurur. Birincisi, bir warp'taki thread'ler koşullu 

dallanma nedeniyle farklı çalıştırma yollarına sahipse, warp her dalı seri bir şekilde 

çalıştıracaktır. Bu duruma "thread ayrılma" (İng. thread divergence) denir ve warp için çalışan 

komutların toplam zamanını arttırır. İkincisi, bir bloktaki thread'lerin sayısı warp boyutunun 

bir katı olmazsa, kalan komut döngüleri boşa gidecektir. Bir thread bloğu içindeki thread'ler 

aynı anda global bellekten peş peşe elemanlara erişirlerse, tek bir bellek işleminde birçok 

eleman kullanılır. Buna "bellek bütünleştirme" (İng. memory coalescing) denir. Paylaşılan bellek 
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yığın (İng. bank) yapılarında organize olur. Aynı anda birçok thread'in aynı yığına erişim 

talebi "yığın çatışmasına" (İng. bank conflict) neden olur. CUDA bu durumu, thread'lere seri 

erişim vererek çözer, bu da çalışma süresini arttırır.  

3. LİTERATÜRE BAKIŞ 

 Teknolojinin gelişimiyle birlikte veri toplama yeteneği de artmış, analiz edilecek çok 

boyutlu ve geniş ölçekli veri kümeleri doğurmuştur. Veri demetleme uygulamalarında veri 

boyutu arttıkça makul bir sürede programın sonlanmasına yönelik çalışmalara ilgi artmıştır. 

Son zamanlarda araştırmacılar düşük maliyetle yüksek performans sağlayan GPGPU 

yaklaşımını tercih etmeye başlamıştır. 

 Veri demetleme algoritmalarının performansını GPU ile güçlendiren çalışmalar, bu 

başlık altında önce algoritmanın kısa bir açıklaması ardından tarihsel sırayla çalışmaların 

özeti şeklinde anlatılacaktır. 

3.1. K-means Algoritması  

 K-means algoritması, 1957 yılında Cox tarafından ortaya atılmıştır; 1967 yılında 

MacQueen (MacQueen, 1967) tarafından k-means adı verilmiştir. Algoritmanın adımları 

şunlardır (Farivar, Rebolledo, Chan, & Campbell, 2008): 

1. Demet sayısı k’yi belirle. 

2. Rastgele k kadar demet üret.  

3. Her noktayı en yakın demet merkezine ata. 

4. Yeni demet merkezlerini yeniden hesapla. 

5. Herhangi bir yakınsama kriteri karşılanana dek önceki iki adımı tekrarla. 

 K-means basitliği, uygulama alanının geniş olması ve paralelleştirmeye çok uygun 

yapısı ile bu zamana kadar literatürde GPU ile performansının geliştirilmesi için üzerinde en 

fazla çalışılan veri demetleme algoritmasıdır. 
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 Hall & Hart (2004) (Hall & Hart, 2004) bildiğimiz kadarı ile bir veri demetleme 

algoritmasını GPU ile hızlandırmaya çalışan ilk çalışmayı gerçekleştirmişlerdir. Cg grafik 

programlama API’sini kullanarak k-means'i GPU’da uygulamışlardır. GPU programlamanın 

daha zor olduğu o dönemde veri doku ünitelerinde saklanmakta idi. Bu durum aynı anda 

kısıtlı sayıda verinin hesaplanmasına izin veriyordu. Dolayısıyla veri ve boyut sayısında 

kısıtlamalar çok önemli bir sorundu. Yazarlar, bu probleme, çok geçişli etiketleme ve doku 

yapıları içinde farklı bir veri düzeni kullanarak çözüm getirmeye çalışmışlardır. Herhangi bir 

zamanda, sadece bir demet merkezi, parça gölgelendirici sabitlerinde saklanabilmiştir. Bu 

yapı, demet sayısı arttıkça hesaplama geçişleri arttığından performansın sınırlanmasına 

neden olmaktadır. Hesaplanan uzaklıkların derinlik tamponuna yazılması her defasında 

değerlerin 0 ile 1 aralığına ölçeklenmesini gerektirmiştir. Deneylere göre, CPU uygulamasına 

göre sadece 1.5 ila 3 kat hızlanma sağlanabilmiştir. Benzer olarak, Cao ve ark.(2006) (Cao, 

Tung, & Zhou, 2006) çok geçişli hesaplama metodunu kullanmışlar; ek olarak grafik 

işlemcisinin donanım hızlandırmalı vektör operasyonlarını şablon tamponu kullanarak 

parça işlemcideki işlem sayısını azaltmışlardır. Deneylere göre, CPU uygulamasına göre 3 ila 

8 kat hızlanma sağlayabilmişlerdir. Takizawa & Kobayashi (2006) (Takizawa & Kobayashi, 

2006) de aynı sorunu ele almışlar; fakat daha önceki çalışmaların probleme çok geçişli bir 

mekanizmayla çözüm getirmelerinden farklı olarak, bir PC küme sistemi kullanarak 3 

seviyeli hiyerarşik paralel işleme geliştirmişlerdir. Büyük-ölçekli veri demetleme görevini, 

küçük alt kümeleri demetleme görevine bölmüşler. Alt görevleri GPU ile donatılmış PC'lere 

dağıtmışlar. Alt görevlerde GPU’yu en yakın komşu aramayı hızlandırmak için kullanmışlar. 

Uygulamayı MPI ve OpenGL ile geliştirmişler. CPU ile GPU uygulamalarının aynı sonuçları 

verip vermediğini ele almamışlar. Bu çalışmanın önemi, işi birçok GPU’ya büyük parçalar 

(coarse-grained) seviyesinde dağıtmanın mümkün olduğunu göstermesidir. İlerleyen 

yıllarda araştırmacıların ilgisi bu yöne kaymaya başlayacaktır. Deneylere göre, GPU 

olmaksızın yalnız CPU kümesine göre, yazarların GPU ile donatılmış CPU kümesi 4 kata 

kadar hızlanma sağlamış. 

 2006 yılının sonlarına geldiğimizde Nvidia’nın CUDA arayüzü ortaya çıkmış, GPU 

ile güçlendirilmiş veri demetleme uygulamaları geliştirmek isteyen fakat mevcut grafik 

API’lerinde genel bir problem ifade etmenin zorluğuyla karşılaşan araştırmacılara, C-benzeri 



 

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74 
27 

sentaks, yüzlerce çekirdekli yüksek derecede paralel bir mimari ve çok yüksek bellek bant 

genişliği sağlanmıştır. CUDA’nın getirdiği kolaylıklarla birlikte, GPU ile veri demetleme 

algoritmalarının performansını artırma çalışmaları hem çoğalmış hem de -CUDA’nın da halen 

geliştirilmeye devam etmesiyle- performans iyileştirmeleri yüzlerce katı bulmuştur. CUDA 

arayüzünü kullanarak k-means demetleme algoritmasının GPU tabanlı uygulaması ilk kez 

Che ve ark. (2007) (Che, Meng, Sheaffer, & Skadron, 2007)’nın çalışmasında görülmüştür. 

Yazarlar, önceki çalışmalardaki gibi GPU’da sadece en yakın demet merkezlerinin 

bulunduğu aşamayı her thread’e 1 veri noktasının hesabını vererek paralelleştirmişlerdir. 

Deneylerde, k-means’in CUDA versiyonu, MineBench CPU versiyonuna göre 8 kata kadar 

hızlanma göstermiştir. Yazarlar, CUDA’nın sunduğu bir çok imkandan yararlanmadıkları ve 

herhangi bir tasarım yapmadıkları halde, geçmiş çalışmalara göre oldukça iyi bir hızlanma 

elde etmişlerdir. Bu durum GPGPU’nun çok büyük umut vaat ettiğinin açık bir 

göstergesidir. Yazarların çalışmasına çok benzerlik gösteren Farivar ve ark. (2008) (Farivar, 

Rebolledo, Chan, & Campbell, 2008) çalışmasında ise k-merkezlere çok sık erişim olması 

nedeniyle bellek erişim gecikmesinin önüne geçmek için demet merkezleri GPU’nun global 

belleği yerine GPU’nun sabit (constant) belleğinde saklanmıştır. Bir boyutlu veri noktaları 

kullandıkları deneylerde, temel CPU uygulamasına göre, geliştirdikleri uygulama 13 kat 

hızlanma sunmuştur. Bu çalışma, sık erişilen veriler için sabit bellek kullanımının 

performanstaki katkısını açıkça göstermiştir. Öte yandan bu durum, demet ve boyut sayısını 

sınırlamıştır. Ayrıca, deneylerde çok boyutlu bir veri kümesi kullansalardı, uzaklık hesabı 

tek bir çıkarma işlemi ile hesaplanamayacak, eleman başına düşen hesapsal yük artacak ve 

gerçek veri kümeleri kullanıldığında uygulamanın nasıl çalıştığıyla ilgili daha doğru 

sonuçlar elde edilecekti. Global bellek erişimi gecikmesini önlemeye çalışan bir başka 

çalışma Che ve ark. (2008) (Che, Boyer, Meng, Sheaffer, & Skadron, 2008)’in uygulamasıdır. 

Bu amaçla yazarlar tüm veri kümesini GPU’nun doku belleğine, demet merkezlerini ise 

GPU’nun sabit belleğine saklamışlar. Deneylerde tek thread'li CPU referans uygulamasına 

göre 72 kat; 4 thread'liye göre 35 kat hızlanma sağlamışlardır. Yazarların performans 

kazançlarının temelinde yatan etken, verimli okuma için önbellek mekanizmasına sahip 

GPU’nun doku ve sabit belleğinden yararlanmaları olmuştur. Bu uygulamadaki dezavantaj, 

tüm veri kümesinin doku belleğe sığmasını gerektirmesidir. 
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 Bu zamana kadarki çalışmalarda k-means’in sadece 1 adımını paralelleştiren 

uygulamaların aksine, Shalom ve ark. (2008) (Shalom, Dash, & Tue, Efficient K- Means 

Clustering Using Accelerated Graphics Processors, 2008) algoritmanın tamamını GPU’da 

uygulamaya çalışmışlardır. Ancak uygulamayı OpenGL ve gölgelendirici (shader) 

programlar aracılığıyla kernelleri uyandırmak için GLSL kullanarak gerçekleştirmişlerdir. 

GPU’nun çok-geçişli canlandırma ve çok-gölgelendirici yeteneklerini kullanmışlardır. Tüm 

verileri dokularda saklayarak doku kullanımını maksimize edip gölgelendirici program 

sabitleri kullanımını minimize etmişlerdir. Bu sayede, CPU ve GPU arasındaki veri 

işlemlerini azaltmışlardır. K-means’in tüm adımlarını GPU’da uyguladıkları için iterasyonlar 

boyunca verinin CPU’ya kopyasını tutuyormuş, böylece yarış durumu önlenmiş. Sonunda, 

azaltma nesneleri ana (host) belleğe geri kopyalanıyormuş ve gerekirse global bir birleştirme 

yapılıyormuş. Makalede deneysel çalışmalarda işlemlerin ne kadar süre aldığına yer verilse 

de, elde edilen hızlanmaya dair bir bilgi belirtilmemiş. Ayrıca, yazarların çoğaltma yaklaşımı 

büyük ölçekli veri kümeleri kullanıldığında ek yük getirebilmektedir. GPU’nun bellek 

yapılarından verimli yararlanmak isteyen Böhm ve ark. (2009) (Böhm, Noll, Plant, 

Wackersreuther, & Zherdin, Transactions on Large-Scale Data- and Knowledge-Centered 

Systems I, 2009)’nın çalışmasında ise saklayıcılar da kullanılmıştır. Veri kümesi ve demet 

merkezleri GPU'nun global belleğinde saklanmış.Bir veri noktasının demet atamasından 

sorumlu olan her thread, verisini kendi saklayıcısına yüklüyormuş, sonra tüm merkezleri tek 

tek saklayıcıya yükleyip verinin yüklendiği merkez ile arasındaki uzaklığı hesaplıyormuş. 

Bu uzaklık, minimum uzaklıktan küçükse noktayı o demete atıyormuş. Yazarların bu 

yaklaşımı, çok hızlı saklayıcı yapılarından faydalandıkları için performansa büyük katkı 

getirmiştir. Deneylerde CPU uygulamasına göre küçük demet sayıları için 100 kata kadar ve 

256 demet için 1000 kat hızlanma sağlanmış. Bu çalışma, CUDA’nın kullanıma imkan 

sağladığı küçük bellek alanına sahip fakat çok hızlı saklayıcıların doğru yerde, doğru şekilde 

kullanıldığında ne kadar kazanç getireceğini göstermektedir. 

 Wu ve ark. (Mart 2009) (Wu, Zhang, & Hsu, GPU-Accelerated Large Scale Analytics, 

2009) ise veri kümesini global belleğe yükledikten sonra satır-tabanlı düzenden sütun tabanlı 

düzene çevirerek farklı bir yaklaşım denemişlerdir. Bu sayede, global bellek kullanımından 

dolayı olası gecikmeleri minimize edecek verimli bütünleşik bellek okumalarına imkan 
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tanınmıştır. Bu düzen, k-means’in GPU uygulaması için ilk defa bu çalışmada 

görülmektedir. Yazarlar k-means’in sadece her veri noktasına bir merkez atanan 

prosedürünü GPU üzerinde paralelleştirmişler, diğer adımlar CPU’ya bırakılmıştır. 

Makalede, kerneller yürütülürken değeri sabit kalacak verilerin doku ve sabit bellekte; çok 

sık erişilecek verilerin ise paylaşılan bellekte tutularak verim alındığı vurgulanmıştır. 

Deneylerde, tek çekirdek üzerinde çalışan MineBench’e göre ortalama 190 kat hızlanma elde 

edilmiştir. Bir önceki çalışmada büyük demet sayısı için elde edilen verimin çok daha yüksek 

olması, saklayıcılardan yararlanmanın ne kadar önemli olduğunu bir kez daha 

göstermektedir. Aynı şekilde sütun tabanlı düzeni kullanan Zechner & Granitzer (2009) 

(Zechner & Granitzer, 2009) çalışmasında veri, boyut ve demet sayısına getirilen 

sınırlamaları kaldırmak için veriyi parça parça işleme yaklaşımı geliştirmiştir. CPU'da veri 

noktaları thread sayısına bölünerek işlenecek parça sayısı bulunmuş. Her blok, 1 veya daha 

çok parçanın işlenmesinden sorumluymuş. Bir thread, bloktaki diğer thread'lerden önce 

bitirirse, bütünleşik bellek erişimi için diğer thread'leri bekliyormuş. Bloktaki thread'lerden 

her biri, aynı merkezin bir bileşenini paylaşılan belleğe yüklüyormuş. Thread'ler, kendi veri 

noktasının bileşenini global bellekten bütünleşik alıyormuş. Herhangi bir anda, bir bloktaki 

tüm thread'ler, aynı merkeze uzaklığı hesaplıyorlarmış. Bir merkezi tüm boyutlarıyla 

paylaşılan belleğe yüklemek, boyut sayısını kısıtlayacağından, yüklemeyi ve uzaklık 

hesaplama işlemini parça parça yapmışlar. Her iterasyonda bir bloktaki thread sayısı kadar 

merkezin bileşeni, paylaşılan belleğe yüklenmiş. Her bileşen için kısmi uzaklık hesaplanmış. 

Tüm thread'ler, veri noktasına en yakın merkezi bulduğunda, merkezin etiketi global belleğe 

yazılmış. Deneylerde CPU uygulamasına göre 43 kata kadar hızlanma sağlanmış. K-

means’in GPU uygulaması için ilk defa burada uygulanan parça işleme tekniği sınırları 

kaldıran oldukça kullanışlı, önemli bir yöntem olsa da getirdiği ek yükler nedeniyle 

hızlanma diğer çalışmalardan daha düşük olmuştur. Wu ve ark. (Mayıs 2009) (Wu, Zhang, & 

Hsu, Clustering Billions of Data Points Using GPUs, 2009) da veri kümesine getirilen sınırı 

ortadan kaldırmaya çalışmışlardır. GPU’nun belleğine sığmayacak kadar büyük veri 

kümesiyle çalışan uygulamalar için önceki uygulamalarını (Wu, Zhang, & Hsu, GPU-

Accelerated Large Scale Analytics, 2009) genişletmişlerdir. Kullanılan akış tabanlı yaklaşım 

da benzer şekilde veri kümesini parçalara bölmeye dayanıyormuş. Her iterasyonda sırayla 
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büyük bloklar işleniyormuş. Bir bloğun işlenmesi, bloğun GPU’ya transfer edilmesini; sütun-

tabanlı biçime dönüştürülmesini; her verinin demet üyeliğinin bulunmasını, bulunan 

sonuçların CPU’ya gönderilmesini içeriyormuş. CUDA akışları, her blok üzerindeki 

ilerlemeyi izlemek için kullanılıyormuş. Tüm çağrılar asenkronmuş. k merkezler sabit 

bellekte tutulmuş.1 milyar verili bir veri kümesi kullandıkları deneylerde, 2 akışlı seçenek en 

iyi çalışmış. Akış etkin işlem, tüm veri kümesinin GPU’nun belleğine sığdığı uygulamaya 

göre ekstra transpose işlemi, kernel çalıştırma ve senkronizasyonun getirdiği ek yükten 

dolayı 1.1 ila 2.5 kat arasında bir düşüş göstermiş. (Wu, Zhang, & Hsu, GPU-Accelerated 

Large Scale Analytics, 2009)’teki uygulamalarında 1 kez transpose yeterliyken, burada her 

parçanın her seferinde transpose edilmesi gerekmiş. Sabit belleğin yetmeyeceği durumlarda 

doku bellek de kullanıldığında, program 2.2 kat yavaşlıyormuş. Merkezler sabit belleğe 

sığdığında, 8 çekirdekli CPU versiyonuna göre 10 kattan çok hızlanma; doku bellek de 

kullanıldığında 3 kat hızlanma sağlanmış. Ayrıca, (Che, Boyer, Meng, Sheaffer, & Skadron, 

2008)’den 2-4 kat; (Fang, et al., 2008)’den 20-70 kat daha hızlıymış. 

 Bai ve ark. (2009) (Bai, He, Ouyang, Li, & Li, 2009) ise demet merkezlerini güncelleme 

adımını da GPU’da yapmışlar. Bu adıma geçmeden önce CPU’da demet etiketlerini sıralatıp 

her demetin kaç veri noktası içerdiğini hesaplatmışlar. GPU’ya yüklenen bu verilere göre her 

thread bir demetin yeni merkezini hesaplamakla sorumlu tutulmuş ve kendi demetinin veri 

nesnelerini sürekli okuyarak işlemini gerçekleştirmiş. Bu sayede, her thread için her veri 

noktasının sorumlu olduğu demete ait olup olmadığına tek tek bakması gerekmemiş. Bu da 

bir warp'taki thread'ler arasında SIMD yapısının bozulmasıyla verimi düşüren thread 

ayrılma durumu oluşmasını önlemiş. Bu sayede güncelleme işlemi çok hızlı bir şekilde 

gerçekleşmiş; ancak CPU-GPU arası veri transferi yükü oluşmuştur. Deneylerde, CPU 

tabanlı k-means’e göre yazarların GPU tabanlı uygulaması, sadece demetleme çalışmasına 

bakıldığında 27 ila 56 kat; toplam çalışma zamanına göre 8 ila 14 kat hızlanma sağlamıştır. 

Bu çalışma k-means’in GPU uygulaması için demet güncelleme adımında paralelizmi artıran 

sıralama yaklaşımını ilk kez kullanması bakımından önemlidir. Yazarın thread ayrılmayı 

engelleme yaklaşımını oldukça verimli olsa da ek yükler, tüm verinin global bellekte 

tutularak GPU’nun çeşitli hızlı bellek yapılarından faydalanılmaması, global belleğe 

erişimlerin sık olması ve bütünleşik olmaması performansın önceki çalışmalardan daha 
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düşük olmasıyla sonuçlanmıştır. Etiketleme adımının yanında merkez güncelleme adımını 

da GPU ile paralelleştiren ve CPU’da sıralama yaklaşımını kullanan bir diğer çalışma Karch 

(2010) (Karch, 2010)’ın yüksek lisans tez çalışmasıdır. GPU’da görüntü demetleme üzerine 

odaklanan yazar, önceki çalışmadan farklı olarak etiketleme adımında her thread’in 

senkronizasyonla bir merkezi paylaşılan belleğe yüklemesini ve bu merkezlerle sorumlu 

olduğu piksel arasındaki uzaklığı hesaplamasını sağlamış. Ayrıca, merkez güncelleme 

adımında da farklı olarak, her thread bloğuna bir demetin merkezini hesaplatmış. Global 

bellekten blok boyutunca piksel okunuyormuş. Her thread,1 pikselin koordinatlarını (R,G,B) 

paylaşılan bellekteki koordinat dizisine ekliyormuş. Her thread, kendi dizi elemanındaki 

değerleri toplamak zorundaymış; çünkü yarış koşulları nedeniyle tüm thread'ler için bir 

değişken kullanmak mümkün olmuyormuş. Bu ihtiyaçtan dolayı paralel azaltma 

fonksiyonu, piksel koordinatlarını topluyormuş. Deneylerde CPU uygulamasına göre 50 

kata kadar hızlanma sağlanmış. Bu çalışma GPU’nun paylaşılan bellek yapısından 

yararlandığı önceki çalışmadan daha iyi performans kazancı elde etmiştir. 

 Wu & Hong (2011) (Wu & Hong, 2011) ise k-means’in GPU uygulaması için ilk defa 

üçgen eşitsizliği ilkesinden faydalanarak gereksiz uzaklık hesaplamalarını önleyen bir 

yaklaşım izlemişlerdir. Sadece etiketleme adımının GPU ile hızlandırıldığı uygulamada, 

geliştirilen CUDA-tabanlı hibrit algoritma, genel bir veri seti için üçgen eşitsizliğinin 

kullanılıp kullanılmamasına duruma göre kendi belirliyormuş ve yük dengeleme 

yapıyormuş. Ayrıca, yük dengeleme ve bellek bütünleştirme arasındaki ödünleşimi 

incelemek için veri düzenlemesini yeniden ayarlayan bir teknik sunmuşlar. Deneylere göre, 

hibrit CUDA algoritması, tek thread'li CPU-tabanlı versiyona göre k’nın küçük değerleri için 

75 kat hızlıymış. Hibritleşme ek yük getirmesine rağmen, k’nın büyük değerleri için 

performansı hibritleşmenin olmadığı yaklaşımla aynı oluyormuş, ölçeklenebilirlikte ise hibrit 

yöntem daha iyiymiş. Bu çalışma, üçgen eşitsizliği kullanarak hesaplama sayısını azaltması 

bakımından önemlidir, bu yöntem uzaklık hesabı gerektiren diğer demetleme 

algoritmalarında da oldukça kullanışlı olacaktır. 

 Veri demetleme algoritmalarının GPU kullanarak paralel bir şekilde uygulanmasını 

sağlayan CUDA için C ile açık-kaynak kodlu bir kütüphane yazan Kohlhoff ve ark. (2011) 



AJIT-e: Online Academic Journal of Information Technology 
2013 Spring/Bahar  – Cilt/Vol: 4 ‐ Sayı/Num: 12 
DOI: 10.5824/1309‐1581.2013.2.002.x 

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=74 
32 

(Kohlhoff, M.H.Sosnick, Hsu, Pande, & Altman, 2011) çalışmalarına CAMPAIGN (Clustering 

Algorithms for Massively Parallel Architectures Including GPU Nodes) ismini vermişler. 

CAMPAIGN’de k-means, k-medoids, k-centers, hiyerarşik demetleme ve kendini-

düzenleyen harita olmak üzere 5 algoritmanın seri bir CPU referans versiyonu ve bir GPU-

hızlandırılmış versiyonu bulunuyormuş. Uzaklık ölçütü için öklid, manhattan ve chebyshev 

seçeneklerini sunmuşlar. Makalede açık kaynak kodlu uygulamalarını isteyenlerin 

indirebilecekleri bir link vermişler; bunun dışında kullandıkları yöntem ve tasarımlarıyla 

ilgili hiçbir bilgi vermemişler. Deneylerde, CPU referans uygulamasına göre, k-means 69 kat, 

k-medoids 102 kat, k-centers 178 kat, hiyerarşik demetleme 5 kat, kendini düzenleyen harita 

ise 2 kat civarında bir hızlanma sunmuş. K-means’in neredeyse tüm adımlarını (ilklendirme 

adımı hariç) GPU’da uygulayan (Shalom, Dash, & Tue, Efficient K- Means Clustering Using 

Accelerated Graphics Processors, 2008), (Fang, et al., 2008)], (Bai, He, Ouyang, Li, & Li, 2009) 

ve (Karch, 2010) çalışmalardaki gibi Jian ve ark. (2011) (Jian, et al., 2011) da k-means’i CUDA 

ile paralelleştirmiştir; bu amaçla demet etiketi güncelleme, merkez güncellemeye merkez 

hareketlenmesi bulma olmak üzere 3 kernel yazmışlar. Demet etiketi güncelleme kernelinde, 

her thread1 veri noktasından sorumluymuş. Veri noktalarının boyut bölümleri ve k 

merkezler bütünleşik şekilde paylaşılan belleğe yüklenmiş. Merkez güncelleme kernelinde, 

geliştirdikleri paralel yüksek boyut azaltma planını uygulamışlar. Bu planda, bir verideki 

farklı boyutlar bağımsızsa tüm verilerdeki aynı boyut, ayrı bir vektör olarak ele alınıyormuş 

ve her thread bloğuna bir boyut vektörü veriliyormuş. 1 boyutlu azaltma için CUDA SDK’ 

daki ardışık adresleme azaltma seçilmiş. Son iterasyonda, yeni merkezler eski merkezlerden 

çok uzaktaysa, hareketlenme olmuş demekmiş. Bunun için merkez hareketlenmesi bulma 

kernelinde, öncelikle eski merkezler ile yenilerin arasındaki fark hesaplanıp, fark matrisine 

atılıyormuş ve paralel yüksek boyut azaltma planı uygulanıyormuş. Deneylere göre CU-K-

means, küçük bir veri seti üzerinde (Fang, et al., 2008)’den 5 kat daha hızlıymış. Bu 

çalışmada bütünleşik bellek okumalarına dikkat edilmiş; boyut azaltma tekniğiyle thread 

paralelleştirme maksimize edilmiş ve paylaşılan belleği değiştirme maliyet önlenerek 

performans kazancı elde edilmiştir. Benzer biçimde, Kohlhoff ve ark. (2012) (Kohlhoff, 

Pande, & Altman, K-means for parallel architectures using all-prefix-sum sorting and 

updating steps, 2012) da k-means’i tamamen GPU’da uygulamıştır. (Bai, He, Ouyang, Li, & 
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Li, 2009) ve (Karch, 2010) çalışmalarındaki gibi demet güncelleme adımından önce sıralama 

yaklaşımı kullanılmıştır; fakat onlardan farklı olarak bu işlem GPU’da hesaplatılmıştır. 

Çalışmada paralel-önek-toplamı tabanlı sıralama algoritması uygulanmıştır. (Wu, Zhang, & 

Hsu, GPU-Accelerated Large Scale Analytics, 2009), (Zechner & Granitzer, 2009) ve (Wu, 

Zhang, & Hsu, Clustering Billions of Data Points Using GPUs, 2009) çalışmalarındaki gibi 

veri noktaları sütun-tabanlı; demet vektörleri satır-tabanlı düzende saklanmıştır. Demet 

vektörleri, peş peşe tek tek işlenirken, veri vektörleri, niteliklere bölünmüştür. 4 yardımcı 

kernel yazılmıştır. (1)Paralel veri azaltma kerneli, belleğin bir bölümünde saklanan kısmi 

değerleri alıp tek bir sonuç değerine birleştirmektedir. (2)Tüm-önek-toplamı kerneli, bir çok 

thread ile paylaşılan bellek üzerinde çalışan toplam bu kernel ile yerinde hesaplanmaktadır. 

Bu kernel, thread'lere dağıtılmış veriden bir kısmının bir dizide toplanmasına karar 

verildiğinde, istenen verileri tutan thread'lere, dizinin indislerini bildirmek için 

kullanılmıştır. (3)Veri sıkıştırma kerneli, sıralanmamış veri noktaları içinden belirli bir demete 

atanan veri noktalarını seçme gibi bir kriteri karşılayan alt kümeyi çıkarmada kullanılmıştır. 

Burada komşu indisleri hesaplamak için tüm-önek-toplam kerneli kullanılmıştır. (4)Uzaklık 

ölçütü kerneli, ölçütler arasında kolayca geçiş yapmak için ayrı bir kernel olarak yazılmıştır. 

Vektörler bileşenlerine bölünerek sabit-uzunlukta segmentlerde işlenmiştir. Böylece 

paylaşılan belleğin sabit-uzunluğu kullanılmıştır. Veri noktaları demetlere atanmalarına göre 

sıralanırken, tüm noktaların yarısından fazlası sıralanmamışsa tam bir sıralama; aksi 

takdirde önceki sıralamayı güncelleme uygulanmıştır. Sıralama sayesinde, zaman 

karmaşıklığını azaltılmış ve bir warp içindeki thread'lerin hepsinin doluluğunu sağlanmış; 

fakat sıralama yaparken tampon kullanıldığından alan gereksinimi neredeyse iki katına 

çıkmıştır. Deneylerde, CPU uygulamasına göre 200 kata kadar hızlanma sağlanmıştır.  

 K-means’in en yakın demet arama adımı için bir PC küme sistemi üzerinde 3 seviyeli 

hiyerarşik paralel işleme öneren (Takizawa & Kobayashi, 2006)’deki çalışma gibi 

Vaitheeshwaran ve ark. (2012) (Vaitheeshwaran, Nagwanshi, & Rao, 2012) da onlardan farklı 

olarak uygulamayı OpenCL kullanarak geliştirmeyi önermiştir. Yazarlar deneylere göre bu 

yaklaşımın oldukça performans kazancı sağladığını söylemişler; fakat makalede 

uygulamalarının sözde koduna, deneysel çalışma detaylarına ve sonuçlarına ilişkin herhangi 

bir bilgiye yer vermemiş, sadece önerilerini sunmuşlardır. 
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 Mevcut uygulamalardan farklı olarak veri boyutuna göre 2 strateji geliştiren Li ve 

ark. (2013) (Li, Zhao, Chu, & Liu, 2013)’nın uygulamalarında veri kümesi küçükken 

saklayıcılardan yararlanılırken, veri kümesi çok büyükken hesapsal yükün bellek erişimine 

oranını yüksek tutmak için paylaşılan bellekten de yararlanılmıştır. Veri kümesi küçükken, 

veri noktaları global bellekten saklayıcılara yüklenip o veri noktasına en yakın merkezi 

bulma işlemi boyunca saklayıcılardan erişilmiştir. Global belleğe bütünleşik erişimler 

yapılarak okuma gecikmesi azaltılmıştır. Yöntemin dezavantajı saklayıcı sayısıyla 

sınırlanmasıdır. Veri kümesi büyükken, veri paylaşılan belleğe kare kare bölünerek 

yüklenmiştir. Her veri noktası global bellekten 1 kez okunmuştur. Bu yöntemde, yığın 

çatışmasını  önlemek için bir yarı-warp’daki thread'ler için 16 sürekli adrese erişen 

bütünleşik okuma benimsenmiştir. Yazarlar, uzaklık hesaplama işleminin matris çarpımı ile 

aynı akışı paylaştıklarını fark etmişler. Veri noktalarını data[n][d], merkezleri centroid[d][k] 

ve uzaklık sonuçlarını Result[n][k] matrisi olarak ifade etmişler ve 3 matrisi, 16x16 kare 

matrislere bölmüşler. Her blok Result matrisindeki 2 kareyi hesaplıyormuş: SR[16][16x2]. SR 

global bellekte uzaklıkları saklıyormuş. Her thread, SR’nin bir sütununu hesaplıyormuş. 

Global bellekten verinin bir karesi, paylaşılan belleğe yükleniyormuş ve geçici bir uzaklık 

hesaplanıyormuş, sonuç saklayıcıda tutuluyormuş. Merkezler sabit bellekte saklanıyormuş. 

Yeni demet merkezinin bulunduğu işlemi, “böl ve yönet” stratejisiyle gerçekleştirmişler. Bu 

yöntemde veriyi SM sayısına bağlı olarak gruplara ayırıp, her grubu azaltarak geçici 

merkezleri alıyorlarmış, son demet merkezlerini CPU’da hesaplıyorlarmış. Büyük veri 

kümeleriyle çalışırken, “böl ve birleştir” stratejisini kullanmışlar. Veri kümesini grup grup 

yükleyip, sonra geçici sonuçları hesaplatıp, birleştirerek sonucu elde ediyorlarmış. Deneylere 

göre, düşük boyutlu veri kümelerinde, [25]’den 3 ila 8 kat; [20]’dan 10 ila 20 kat; [22]’den 100 

ila 300 kat daha hızlıymış. Yüksek boyutlu veri kümelerinde ise [20]’dan 4 ila 8 kat; [22]’den 

10 ila 40 kat daha hızlıymış.  

 K-means veri demetleme algoritması için GPU ile paralelleştirilmiş literatürdeki 

uygulamalar burada sona ermektedir. Literatürdeki çalışmaları birbiriyle karşılaştırarak 

yorum yapmak bizim açımızdan zor; çünkü elde edilen hızlanmalar bir çok faktöre bağlıdır. 

Örneğin; bazı çalışmalar, sadece hızlandırdıkları adımın karşılaştırmasını sunarken, bir 

kısmı uygulamanın tamamı için karşılaştırmasını sunmuştur. Ayrıca, her çalışmada 
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kullanılan veri kümesi, boyut sayısı, demet sayısı, toplam iterasyon sayısı farklılık 

göstermektedir. Bunun dışında, karşılaştırma için temel aldıkları CPU uygulaması hepsinde 

farklıdır. Dahası, yazarların çoğunluğu çalışmalarında sadece hızlanma katsayısına yer 

verdiği, geçen süreyi belirtmediği için bir çalışmanın diğer bir çalışmayla karşılaştırılması 

sağlıklı olmayacaktır. Fakat, bazı yazarlar çalışmalarını internette mevcut ve indirilebilir 

kıldıkları için bir çok araştırmacının kendi uygulamasını bunlarla karşılaştırmalarına imkan 

tanımıştır. 

3.2. Hiyerarşik Birleştirici Demetleme (HAC) algoritması  (Hierarchical  agglomerative 
Clustering Algorithm) 

 Hiyerarşik birleştirici demetleme (kısaca HAC) algoritması, AGNES (İng. 

AGglomerative NEsting) algoritması olarak da bilinir. AGNES algoritması, 1990 yılında 

Kaufman ve Rousseeuw (Kaufman & Rousseeuw, Finding Groups in Data: An Introduction 

to Cluster Analysis, 1990) tarafından sunulmuştur. HAC veya AGNES algoritmasında 

(Voorhees, 1986) her nokta ayrı bir demet olarak başlar. Demetlerin birleştirilmesi 

“dendogram” denilen ağaç-benzeri bir yapıda sonuçlanır. 

 Genellikle hiyerarşik demetleme 4 temel adımda gerçekleştirilir (Zhang & Zhang, 

2006):  

(1) Tüm verilerin arasındaki uzaklığı hesapla ve benzerlik uzaklık matrisini oluştur.  

(2) Birbirine en az uzaklıktaki r ve s demetlerini bul.  

(3) r ve s demetlerini birleştir. Birleşmeden etkilenen tüm uzaklıkları yeniden 

hesapla. 

(4) Adım 2 ve 3'ü, toplam demet sayısı 1 olana kadar tekrarla.  

 Zhang & Zhang (2006) (Zhang & Zhang, 2006) hiyerarşik demetlemenin GPU-tabanlı 

bir uygulamasını gen ekspresyonu veri analizini hızlandırmak amacıyla 

gerçekleştirmişlerdir. Nvidia CG grafik programlama dilini kullanan yazarlar, genelde mikro 

dizi veri kümelerinin az boyutlu olmasını temel almışlar ve dokuların kısıtlı sayısı bu 

uygulama için yeterli olmuş. Tek bir veriden tüm değerlerini doku adresleme mantığıyla 1 
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seferde alabilmişler. Uzaklık hesabında ise uzaklık matrisinin aktif kısmını kapsayan üçgen 

bir pencere canlandırmışlar. Üçgen canlandırma, karşılık gelen her uzaklık hesabı için bir 

parça (fragment) üretilmesini gerektirmiş. Deneylerde, CPU uygulamasına göre 2 ila 4 kat 

hızlanma elde edilmiş. Bu çalışma veri boyutunun daha fazla olduğu veri kümelerine de 

uyacak şekilde tasarlanmamıştır. Ancak bildiğimiz kadarıyla ilk defa hiyerarşik demetlemeyi 

GPU ile hızlandırdığı için önemlidir. O dönemki kısıtlar altında performans kazancı fazla 

elde edilememiştir. CUDA'nın ortaya çıkışıyla birlikte, yüksek boyutlu vektörleri de 

demetlemek için Wilson ve ark. (2007) (Wilson, Dai, Jakupovic, & Meng, 2007) CUDA tabanlı 

HAC algoritması gerçekleştirmişlerdir. Performansı, CPU üzerinde çalışan ticari 

biyoinformatik demetleme uygulamalarıyla karşılaştırmışlar ve 10'dan 14 kata kadar 

hızlanma elde etmişlerdir. Böylece, CUDA kullanmanın verimliliğini göstermişlerdir.  

 Hiyerarşik birleştirici demetlemede (HAC) temel işlemlerden biri olan çift yönlü 

(pairwise) uzaklık hesaplamayı Chang ve ark. (2008) (Chang, Jones, Li, Ouyang, & Ragade, 

2008) CUDA aracılığıyla GPU'yu kullanarak hızlandırmaya çalışmışlardır. Çift yönlü 

uzaklıklar için 2 CUDA algoritması sunulmuş. İlk CUDA kodunda, uzaklık hesabı için yarı-

matris kullanılmış. Her thread uzaklık matrisinin 1 satırından sorumluymuş ve bu satırı 

paylaşılan belleğe yükleyip bloktaki diğer satırlara uzaklığını hesaplıyormuş. İkinci CUDA 

kodunda, her thread uzaklık matrisinde 1 elemandan sorumluymuş. Bir thread uzaklık 

matrisinin (i,j) elemanını hesaplarken, öncelikle i.veriyi paylaşılan belleğe yüklüyormuş. 

(i,j+1), (i,j+2)… (i,j+15) elemanlarını hesaplayacak thread'lerin hepsi; paylaşılan belleğe 

yüklenen i.verinin aynı kopyasını kullanıyorlarmış. Aynı şekilde, j. veri paylaşılan belleğe 

yüklendiğinde de, (i+1,j), (i+2,j)… (i+15,j) elemanlarını hesaplayacak thread'lerin hepsi; 

paylaşılan belleğe yüklenen j. verinin aynı kopyasını kullanıyorlarmış. Bu durum, paylaşılan 

bellekte veri paylaşan thread bloğunun kare kullanılmasının avantajını ortaya koyuyormuş. 

Bir bloktaki tüm thread'ler alt matrisleri paylaşılan belleğe yükledikten sonra, her thread 

kendi kısmi öklid uzaklığını hesaplıyormuş. Sonra thread'ler senkronize edilip sonraki alt 

matrise geçiliyormuş. Burada önemli bir nokta yazarların yığın çatışmasını azaltmak için 

veriyi sütun tabanlı düzene çevirmeleridir. Bu sayede 16 kat çatışma azaltılmış. Deneylere 

göre, CPU uygulamasına göre yazarların CUDA-1 uygulaması 4 ila 8 kat; CUDA-2 ise 20 ila 

44 kat hızlanma sağlamış. Bu çalışmadaki ikinci yöntem, paylaşılan belleği verimli 
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kullanması, kare thread bloğu kullanması, yığın çatışmasını önlemesi etkili olmuş ve 

performansa önemli katkılar getirmiştir.  

 HAC algoritmasının bir kısmını GPU'da paralelleştiren çalışmalardan farklı olarak 

Shalom ve ark. (2009) (Shalom, Dash, Tue, & Wilson, Hierarchical Agglomerative Clustering 

Using Graphics Processor with Compute Unified Device Architecture, 2009) algoritmanın 

tamamını tek bağlantı (İng. single link) kullanarak CUDA ile uygulamışlardır. Global bellek 

daha az bellek yönetimi gerektirdiği gerekçesiyle paylaşılan bellekten çok global belleği 

kullanmışlardır. GPU’da benzerlik yarı-matrisini hesaplatmışlardır. Benzerlik matrisi global 

bellekte saklanmıştır. Her blok, benzerlik matrisinin bir kare alt matrisini hesaplamış; her 

thread ise alt matristeki bir elemanı hesaplamıştır. Minimum uzaklık çiftlerini "cublasIsamin" 

fonksiyonuyla sanal olarak bir geçişte belirlemişlerdir. Demetleri birleştirip yeni demet 

vektörünü hesaplatmışlar, benzerlik yarı matrisini ve minimum uzaklık dizisini 

güncellemişlerdir. Sonra demeti CPU’ya transfer etmişlerdir. Benzerlikleri güncelleme ve 

demetleri birleştirme işlemi tek bir demet olana dek tekrarlanmıştır. Global bellekte 1 

boyutlu dizi kullanmak hesapsal performansı önemli derecede arttırmış, sürekli bellek 

adreslerine yazma ve okuma, işlemlerini daha verimli yapmıştır. Deneylere göre, CPU 

versiyonuna göre 30 ile 65 kat hızlanma sağlanmış. Global bellek kullanmaları sebebiyle 

nitelik sayısı 100’ü aşınca hızlanma çok hızlı bir şekilde düşmüştür. Bu çalışmaya çok benzer 

olarak, Chang ve ark. (2009) (Chang, Kantardzic, & Ouyang, Hierarchical clustering with 

CUDA/GPU, 2009) de HAC'i tamamen CUDA kullanarak uygulamışlardır. Çift yönlü 

uzaklık matrisini hesaplamada önceki çalışmalarındaki (Chang, Jones, Li, Ouyang, & 

Ragade, 2008)'deki CUDA-2 yaklaşımını izlenmiş; fakat burada sadece öklid uzaklığı 

kullanılmamıştır. Tek bağlantı işlemini seri bir şekilde yürütüp her iterasyonu mümkün 

olduğunca paralelleştirmişlerdir. Her thread çift yönlü uzaklık matrisinin 1 satırı için 

minimumu bulmuştur. CUDA paralel azaltma (reduction) kullanılarak minimumlar matrisinin 

minimumu bulunmuştur. En yakın demetler birleştirilip SANN özelliği kullanılarak diğer 

demetlerin en yakın komşuları güncellenmiştir. Bu adımdaki kernelde, her thread bir 

demetten sorumluymuş. Matrisin birleştirilen demetin uzaklık matrisindeki yeni minimumu 

CUDA paralel azaltma kullanılarak bulunmuştur. Deneylere göre, CPU versiyonuna göre 

öklid ölçütü için 33 kata kadar; manhattan ölçütü için 48 kata kadar; pearson korelasyon 
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katsayısı için 28 kata kadar hızlanma sağlanmıştır. Bu çalışma, daha dikkatli tasarımıyla 

önceki çalışmaya göre daha ölçeklenebilirdir, yüksek veri boyutlarına sahip veri kümelerine 

de uygundur. GPU'da HAC algoritmasının tamamen uygulayan bir başka çalışma da 

Shalom & Dash (2011) (Shalom & Dash, Efficient Hierarchical Agglomerative Clustering 

Algorithms on GPU Using Data Partitioning, 2011)'nın uygulamasıdır. Çalışmada HAC'in 

gerektirdiği zaman ve bellek karmaşıklığını azaltan Kısmen Örtüşen Bölme (PoP) yöntemi de 

kullanılmıştır. PoP yönteminde, veri p sayıda örtüşen hücreye bölünür. Kesişime “δ-bölgesi” 

denilir. δ, bölme mesafesi veya deltasıdır. Her hücre, çekirdek bölgesini ve komşu δ-bölgeleri 

içerir. Merkez ölçütü için, her demet, tek bir temsilci nokta ile gösterilir. Bir demetin temsilci 

noktası, bir δ-bölgesine düşerse, etkilenen her hücre onu tutar; düşmezse sadece çekirdek 

bölge onu tutar. PoP’un temel konsepti, iterasyonlarda en yakın çiftin diğer tüm hücrelerden 

bağımsız her hücre için bulunması ve bunlardan genelde en yakın çiftin bulunmasıdır. 

Genelde en yakın çift mesafesi δ’dan azsa, o zaman çift birleştirilir ve sadece kapsayıcı 

hücrenin benzerlik matrisi güncellenir. En yakın çift veya birleştirilen demet bir δ-

bölgesindeyse, o zaman etkilenen hücrelerin de benzerlik matrisi güncellenir. Başlangıçta 

δ’ya çok küçük bir değer, p’ye çok büyük bir değer verilir. Git gide δ %x arttırılıp, p %y 

azaltılır. PoP klasik HAC’in gerektirdiği zaman ve bellek karmaşıklığını azaltır. Yazarlar, 

PoP yapısını "90-10 ilişki" biçimine dayanarak, 2-boyutlu veriler için uygulamışlardır. HAC 

algoritmasını GPU’da uygularken karşılaşılan kısıtlar şunlar olmuştur: hesaplamalarda 

thread'lerin yetersiz kalması ve senkronizasyon gerektirmesi; geniş veri kümeleri için bellek 

yetersizliği; küçük fakat hızlı paylaşılan belleğe karşı büyük fakat yavaş global bellek için 

programlanabilirlik. PoP-destekli HAC uygulamasında, her PoP hücresi bir bloğa atanmıştır. 

Her blok, bloktaki veri noktalarının birbirlerine uzaklıklarını hesaplamaktadır. Her thread, 

verilen veri çiftinin aralarındaki mesafeyi bulmaktadır. Bloklarda her fonksiyonun eşzamanlı 

başlatılması ve birleştirme operasyonu paraleldir. Thread'ler sırasıyla, uzaklık hesabı, en 

yakın çiftin belirlenmesi, minimum uzaklık demet çiftinin güncellenmesi ve birleştirilmesi 

fonksiyonlarını çalıştırmışlardır. Deneylerde, CPU versiyonuna göre, GPU'da çalışan PoP-

destekli HAC 2331 kat hızlanma sağlamıştır. 100000 verili veri kümesi kullanıldığında 

GPU’da PoP-destekli HAC, GPU’da klasik HAC'e göre 400 kat daha az bellek gerektirmiştir. 

Literatürdeki HAC'in en verimli GPU versiyonu budur.  
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 Önceki bölümde bahsi geçen CAMPAIGN isimli çalışmayı gerçekleştiren Kohlhoff ve 

ark. (2011) (Kohlhoff, M.H.Sosnick, Hsu, Pande, & Altman, 2011) makalede hiyerarşik 

demetleme için kullanılan yöntemi raporlamamışlar fakat uygulamanın indirilebileceği link 

vermişler ve deneylere göre 5 kat hızlı olduğunuraporlanmıştır. Bu hızlanma mevcut 

çalışmalara göre çok düşüktür.  

3.3. Bulanık C-Means (FCM) demetleme algoritması (Fuzzy C-Means Clustering 
Algorithm) 

 Bulanık c-means (FCM) 1973 yılında Dunn (Dunn, 1973) tarafından sunulmuş ve 1981 

yılında Bezdek (Bezdek, 1981) tarafından geliştirilmiştir. Bulanık demetlemede, veri 

elemanları birden fazla demete ait olabilir. Her veri elemanı, bir üye değerleri kümesiyle 

ilişkilidir.  

 FCM algoritması 4 basit adım ile özetlenebilir (Pangborn, 2010):  

(1) Rastgele M adet noktayı demet merkezi olarak seç.  

(2) Her veri noktasının her demet için üyeliğini hesapla.  

(3) Her demet için, üyeliği bu demete ağırlıklanmış noktalarını topla.  

(4) Her demet merkezini demetin toplam üyeliğine bölerek yeniden hesapla.  

(5) Durdurma kriterini kontrol et, sağlamadıysa adım 2’ye git.  

 Harris ve ark. (2005) (Harris & Haines, 2005) GPU tabanlı FCM algoritmasının 

uygulamasını OpenGL ve Nvidia'nın Cg gölgelendirici (İng. shader) dilini kullanarak 

gerçekleştirmişlerdir. Demet üyeliklerinin üretilmesi ve güncellenmesi adımları, GPU'da bir 

vektör güncelleme parça (İng. fragment) programı kullanılarak yapılmıştır. Deneylere göre, 

CPU versiyonuna göre 2 kat hızlanma sunmuştur. Yazarların uygulamayı geliştirdiği 

dönemde, donanım, parça programlar tarafından alınabilen doku sayısını kısıtlamaktaydı. 

Bu durum verilerin sayısına sınır getirmiştir, uygulama boyut ve demet sayısı bakımından 

ölçeklenebilir değildir. Anderson ve ark. (2007) (Anderson, Luke, & Keller, Analysis and 

Design of Intelligent Systems using Soft Computing Techniques, 2007) benzer bir uygulama 
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geliştirmişlerdir; ek olarak bellek kısıtlarından kaçınmak için demet başına minimum doku 

kullanmaya ve portatifliği artırmak için gölgelendirici (shader) programlarının yeniden 

kullanımını maksimize etmeye çalışmışlardır. Ayrıca, mahalanobis ve GK uzaklık ölçütleri 

kullanmışlardır; bu ölçütler kovaryans matrisi gerektirmiştir. Deneylere göre CPU tabanlı 

uygulamaya göre 8’den 83 kata kadar hızlanma elde edilmiştir. Yazarlar bir sonraki 

çalışmalarında Anderson ve ark. (2008) (Anderson, Luke, & Keller, Speedup of Fuzzy 

Clustering Through Stream Processing on Graphics Processing Units, 2008) uygulamayı 

öklid uzaklık ölçütünü kullanarak gerçekleştirmişlerdir. Burada C-means 6 aşamalı bir 

geçişle uygulanmıştır. GPU P1 programı, her veri noktasının demet merkezlerine uzaklığını 

hesaplamıştır. P2, bu uzaklıkları alıp yeni üyelik değerlerini hesaplamıştır. P3, üyelik 

değerleri ile veri kümesinin nokta çarpımını gerçekleştirmiştir. P4, paylara azaltma; P5, 

paydalara azaltma uygulamıştır. P6, P4 değerlerini P5'te hesaplananlara bölerek demet 

merkezlerini güncellemiştir. Deneylerde CPU FCM versiyonuna göre 4 ila 88 kat arasında 

hızlanma sağlanmıştır. Yine benzer bir çalışmayı Shalom ve ark. (2008) (Shalom, Dash, & 

Tue, Graphics Hardware based Efficient and Scalable Fuzzy C-Means Clustering, 2008) 

büyük sayıda boyut ve demete ölçekleyebilme amacıyla gerçekleştirmişlerdir. Fakat, bu 

durum CPU'dan GPU'ya veri transferinin çok sık ve büyük miktarda olmasıyla performansı 

kısıtlamasıyla sonuçlanmıştır. Yazarlar algoritmanın uzaklık hesaplamaları, üyelik 

hesaplamaları, demet merkezlerinin hesabı gibi yinelemeli kısımlarını gölgelendirici 

programlar kullanarak parça işlemcide çalıştırmışlardır. Uzaklık ve üyelik matrislerini 

dokularda saklamışlardır. Deneylere göre, uygulama CPU uygulamasından 20’den 94 kata 

kadar daha hızlıymış.  

 Bu zamana kadar GPU tabanlı FCM uygulamalarında OpenGL, Cg, GLSL 

kullanılırken CUDA'nın popülerliğinin artmasıyla birlikte Espenshade ve ark. (2009) 

(Espenshade, Pangborn, Laszewski, & Roberts, 2009) çalışmalarında akış sitometri için 

minimum tanımlayıcı uzunluk çıkarsama (MDL) ile bulanık c-means (FCM) demetleme 

algoritmasının GPU tabanlı uygulamasını CUDA kullanarak geliştirmişlerdir. Uygulamada 

tüm paralel işlemler tek kerneldedir. Bu sayede global bellek erişimlerinin sayısı minimize 

edilmiştir ve bellek gereksinimi azaltılmıştır. Başlangıçta demet sayısı seçiminin sonucu çok 

etkilemesine çözüm olarak FCM'e MDL framework'ünü entegre etmişlerdir. FCM 
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algoritmasındaki eşitlikler, her demet için tamamen bağımsız olduğu için CUDA ile bu 

işlemler paralelleştirilmiştir. Uygulamada, FCM bir demet merkezi kümesine yakınsadıktan 

sonra, MDL Q matrisi üretilmiş ve devreye Tabu Arama girmiştir. Hangi demetin dahil 

edilmesi hangi demetin yok sayılması gerektiği tanımlanmıştır. Uygulamanın birkaç 

problemi vardır. Birincisi bloklar veri paylaşamadıkları için üyelik hesabı paydası için 

uzaklıklar yeniden hesaplanmaktadır. İkincisi, tek kernel olması thread başına çok fazla 

saklayıcı kullanımı gerektirmiştir. Bu durum doluluğu düşürmüştür. Üçüncüsü, bütünleşik 

olmayan çok fazla bellek okuması vardır. Dördüncüsü, geçici sonuçları tutmak için boyut 

sayısıyla orantılı paylaşılan bellek gerekmiştir. Bu durum, boyut sayısı arttıkça blok başına 

thread sayısının azaltılmasını gerektirerek doluluk azalmıştır. Deneylere göre, her FCM 

iterasyonu için gözlenen en yüksek hızlanma 84.34 kat olmuştur.  

 CUDA kullanarak akış sitometri için C-means veri demetleme algoritmasının birçok 

GPU ile hızlandırılmasını Pangborn (2010) (Pangborn, 2010) yüksek lisans tez çalışmasında 

gerçekleştirmiştir. Yazar, tek bir makine (düğüm) üzerinde birçok GPU kullanmıştır. Birçok 

düğüm arasında iletişim için MPI; her düğümdeki birçok thread için OpenMP; GPU için 

CUDA olmak üzere hibrit bir paralel ortam kullanmıştır. Yazar hesaplamayı 4 farklı CUDA 

kerneline ayırmıştır. Tüm kernellerde GPU kaynaklarından tamamen yararlanmak için 

demet sayısı en az GPU'daki çokişlemci (SM) sayısı kadar olmalıymış. Veri kümesi, demet 

merkezleri ve uzaklık matrisi global bellekte saklanmıştır. Veri kümesi sütun tabanlı düzene 

çevrilmiştir. Bu sayede, bütünleşik bellek okumaları sağlanmıştır. Host üzerinde veri 

kümesi, tüm OpenMP host thread'leri arasında paylaşılan bellek olarak işaretlenmiştir. 

Birçok cihazdan kısmi demet merkezlerini birleştirmek için host, her GPU'dan bir paylaşılan 

bellek alanı ayırmıştır. UzaklıkMatrisi Kerneli: Her thread bloğu, öklid uzaklık matrisinin 512 

elemanını hesaplamıştır (thread başına 1 eleman). Demet merkezleri GPU'nun paylaşılan 

belleğinde önbelleklenmiştir. Tüm global bellek okumaları bütünleşik yapılmıştır. Üyelik 

hesaplamalarında 0'a bölme hatasını (veri noktasının demet merkezine eşit olduğu durum) 

önlemede koşullu dallanma koymamak için uzaklığa küçük bir 10-30 hata eklenmiştir. Üyelik 

Kerneli: İkinci kernel, ilk kernelde üretilen uzaklık değerlerini kullanarak sütun tabanlı üyelik 

değerleri matrisini üretmiştir. Üyelik denklemlerinin toplamındaki payda (bölen), tüm 

demetler için aynı olduğundan nesne başına sadece bir kez hesaplanmıştır. Her blok üyelik 
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matrisinin 256 sütununu hesaplamıştır. Her thread, sorumlu olduğu veri noktasının 

demetlere uzaklıklarını toplamıştır. Sonra her uzaklığı tekrar yükleyerek üyelik değerini 

hesaplamıştır. Son üyelik değerleri, orijinal uzaklık matrisinde saklanmıştır. Böylece, bellek 

gereksinimi yarıya düşürülmüştür. MerkezleriGüncelle Kerneli: Kernelde, demetSayısı/4 x 

veriBoyutSayisi bloklu grid kullanılmıştır. Blok başına 4 demet merkezi hesaplanmıştır. Bu 

grid, veri kümesinin global bellekten yüklenmesini 4 kat azaltmıştır. Bir veri elemanı her 

thread için bir saklayıcıya yüklenmiştir. Her thread, 4 üyelik değeri üzerinde çalışıp yaptığı 

hesabı paylaşılan bellekteki her demet merkezine eklemiştir. Tüm verilerin işlenmesinden 

sonra, kısmi toplamlar tek bir değere azaltılmıştır. Sonraki küçük kernel, üyelik matrisini 

demet sayısı uzunluklu vektöre azaltarak demet boyutlarını hesaplamıştır. Her GPU 

denklemin hem paylarını hem paydalarını döndürmüş ve host, yeni demet merkezlerini 

hesaplamak için tüm GPU'lardan sonuçları birleştirmiştir. Deneylerde, CPU referans 

uygulamasına göre elde ettikleri hızlanma 106 kat olmuştur. Tesla-güçlendirilmiş bir süper 

bilgisayar kullanıldığında 32 GPU ile tek bir CPU referans uygulamasına göre, yazarın GPU 

uygulaması %85 paralel hızlanma verimliliği ve 2368 kat hızlanma göstermiştir.  

3.4. K-medoids (PAM) demetleme algoritması (K-medoids Clustering Algorithm) 

 K-medoids (PAM) algoritması, 1987 yılında Kaufman ve Rousseeuw (Kaufman & 

Rousseeuw, Clustering by Means of Medoids in Statistical Data Analysis Based on the L1–

Norm and Related Methods, 1987) tarafından önerilmiştir. K-medoids algoritmasının 

adımları şunlardır:  

1. Demetleri temsil eden k tane rastgele nokta (medoid) seç.  

2. Her noktayı en yakın demete ata.  

3. Medoid olmayan rastgele bir nokta seç.  

4. Seçilen nokta medoid olması durumunda toplam karesel hatadaki değişimi 

hesapla.  

5. Hesaplanan değişim 0’dan küçükse seçilen noktayı medoid yap.  

6. Herhangi bir yakınsama kriteri karşılanana dek 4. adıma git.  
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 Demet sayısı k önceden belirlenir. PAM, sapan verilerden k-means algoritmasına 

göre daha az etkilenir. PAM’da her iterasyon için karmaşıklık n veri noktası sayısı olmak 

üzere O(k(n-k)2) olmaktadır.  

 Espenshade ve ark. (2009) (Espenshade, Pangborn, Laszewski, & Roberts, 2009) 

çalışmalarında bayes bilgi kriteri (BIC) ile k-medoids demetleme algoritmasının GPU ile 

hızlandırılmış bir uygulamasını CUDA ve Tesla mimarisinden yararlanarak sunmuşlardır. 

K-medoids algoritmasında demetleri bulanıklaştırmışlardır. Bayes bilgi kriteri (BIC) belirli 

bir veri seti için en iyi demet sayısını belirlemek amaçlı k-medoids algoritmasına entegre 

edilmiştir. Uzaklık ölçütü öklid kullanılmıştır. Deneylere göre, BIC ile k-medoids tabanlı 

GPU uygulaması, CPU versiyonuna göre 7 kata kadar hızlanma sağlamıştır. 

 Kohlhoff ve ark. (2011) (Kohlhoff, M.H.Sosnick, Hsu, Pande, & Altman, 2011) 

çalışmalarında k-medoids için kullandıkları yöntemi raporlamasalar da uygulamanın 

indirilebileceği bir link verip deneylere göre 102 kat hızlanma elde edildiği raporlamışlardır.  

3.5. CAST demetleme algoritması  (CAST clustering algorithm) 

 CAST (İng. Clustering Affinity Search Technique) 1999 yılında Ben-Dor ve ark. (Ben-Dor, 

Shamir, & Yakhini, 1999) tarafından geliştirilmiştir. CAST, biyolojik veri demetlemede 

yaygın bir şekilde kullanılan hem bölünmeli hem yoğunluk tabanlı bir demetleme 

algoritmasıdır.  

 CAST, nesne benzerliğini saklamak için bir benzerlik matrisi hesaplamaya ihtiyaç 

duyar. CAST, tüm nesnelerin uzaklıklarını saklamak için bir benzerlik matrisi ve bir birleşme 

eğilimi (İng. affinity) eşik değeri giriş parametresine sahiptir. Algoritma şu şekilde çalışır: İlk 

önce demetler için bir C kümesini ve demetlenmemiş nesneleri içeren bir U kümesini 

ilklendirir. C'deki her demet için her nesnenin birleşme eğilimi hesaplanır. U'daki her nesne 

için, nesne ile hedef nesne arasındaki benzerlik hesaplanır ve benzerlik değerleri, hedef 

nesnenin birleşme eğilimi olarak toplanır. Eğer birleşme eğilimi, birleşme eğilimi eşik 

değerine eşit veya daha büyükse, bu nesne, aktif demete eklenebilir ve U'da "demetlendi" 

olarak işaretlenebilir. Aynı zamanda, demetteki her nesnenin birleşme eğilimi, nesne ile yeni 

eklenen nesne arasındaki benzerliği ekleyerek güncelleyebilir. Eğer birleşme eğilimi, 
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birleşme eğilimi eşik değerinden küçükse, en düşük birleşme eğilimli nesne, bu demetten 

kaldırılacaktır ve bu nesne U'da "demetlenmedi" olarak işaretlenir. Demetteki her nesnenin 

birleşme eğilimi nesne ile kaldırılan nesne arasındaki benzerliği çıkartarak güncellenebilir. 

Ekle ve çıkar işlemleri, değişiklik olmayana kadar tekrarlanır. Aktif demet için demetleme de 

sonlanır. Algoritma, adımları tekrarlayarak yeni demet bulma için diğer demetlemeye başlar. 

U nesnelerinin hepsi demetlendi olarak işaretlenince sonlanır (Lin & Lin, 2011).  

 Lin ve Lin (2011) (Lin & Lin, 2011) makalede CAST demetleme algoritmasının iki 

versiyonunu önermişlerdir: talep üzerine hesaplama CAST (kısaca COD-CAST) ve GPU ile 

talep üzerine hesaplama CAST (kısaca COD-CAST-GPU). COD-CAST algoritması, büyük 

miktarda nesneyi, çalışma zamanı bakımından daha verimli işleyebilen bir CAST 

algoritmasıymış. COD-CAST-GPU algoritması ise COD-CAST'i hızlandırmak için GPU’dan 

yararlanıyormuş. Yazarlar, CAST için benzerlik matrisi elde etme aşamasının çok zaman 

tükettiğini belirterek, özellikle nesne sayısı çok iken performans üzerinde bir darboğaz 

oluşturduğunu vurgulamışlar. Önerilen COD-CAST algoritmasının girişi, n nesneymiş (nxn 

benzerlik matrisi değilmiş). Çok geniş bir veri kümesini demetlemek için CAST kullanırken, 

genellikle tüm matrisi belleğe yüklenemiyormuş. Bu nedenle önceden benzerlik matrisini 

hesaplamıyorlarmış gerektiğinde hesaplıyorlarmış. Öklid uzaklık ölçütü kullanılmış. 

Önerilen COD-CAST-GPU algoritması ise COD-CAST için önerdikleri birleşme eğilimi eşik 

değerini güncelleme fonksiyonunun GPU ile paralelleştirilmesini içeriyormuş. Deneylere 

göre, veri sayısı az olduğunda önerilen algoritmaların hızlandırma kat sayısı çok az iken, 

örneğin 128.000 veri olduğunda COD-CAST-GPU, CAST'ın çalışma zamanının sadece %7.7'si 

kadar süre gerektiriyormuş.  

3.6. K-centers demetleme algoritması  (K-centers clustering algorithm) 

 K-centers algoritmasında başlangıçta merkez 0 olarak gösterilen, rastgele bir nokta 

başlangıç merkezi olarak seçilir. Sonra, aktif merkeze tüm N noktanın uzaklıkları hesaplanır 

ve merkez 0'dan en uzaktaki nokta Y bulunur. Y noktası, bir sonraki iterasyon için yeni 

merkez haline gelir. Sonra yeni merkeze tüm N noktanın uzaklıkları hesaplanır ve en yakın 

merkezden daha yakın olup olmadığına bakılır. Bu durumda, noktaya bu yeni merkez 

atanmış olur. Daha sonra, önceden bulunan tüm merkezlerden en uzak nokta bulunur. Bu 
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işlem k iterasyon veya bir minimum demet yarıçapı kriteri karşılanana dek tekrarlanır. 

Demet merkezlerinin sayısı önceden belirtilir (Zhao, Sheong, Sun, Sander, & Huang, 2013).  

 Kohlhoff ve ark. (2011) (Kohlhoff, M.H.Sosnick, Hsu, Pande, & Altman, 2011) 

çalışmalarında k-centers için kullandıkları yöntemi raporlamasalar da uygulamanın 

indirilebileceği bir link verilerek deneylere göre 178 kat hızlanma elde edildiği 

raporlanmıştır.  

 Zhao ve ark. (2013) (Zhao, Sheong, Sun, Sander, & Huang, 2013) moleküler dinamik 

(MD) simülasyonlarının protein biçimleri üzerinde k-centers algoritmasının CUDA ile 

hızlandırılan paralel uygulamasını sunmuşlardır. Uygulamada, bir merkezle başlamışlar ve 

iteratif olarak önceden bulunan demet merkezlerinin hepsinden en uzaktaki noktayı bularak 

k-demet merkezlerinin bir toplamına yaklaşmışlardır. İki protein biçimi arasındaki uzaklığı 

hesaplamak için Theobald'ın dördey karakteristik polinom (QCP) yöntemini 

uygulamışlardır. QCP yönteminin GPU uygulaması, hesaplama başına karışık tek ve çift 

hassasiyetli ondalıklı sayı operasyonlarından yüz binlerce gerektiriyormuş. Uzaklık 

hesaplamalarının toplam sayısını azaltmak amacıyla üçgen eşitsizliği ilkesinden 

yararlanmışlardır. Fakat bu yol her iterasyonun başında merkezden merkeze uzaklıkları 

hesaplama maliyeti getirerek ekstra bellek ve zaman almıştır. Üçgen eşitsizliği ek yükten 

getirse de MD simülasyonlarında demetlemede üçgen eşitsizliğini sağlayan noktalar çok 

olduğu için performansa katkısı çok olmuştur. Veri kümesini sütun-tabanlı düzende global 

bellekte saklamışlardır; bu sayede thread’ler peş peşe bellekten okuma ve belleğe yazma 

yapabilmişlerdir. Demet merkezlerini global bellekte saklamışlardır. Tüm merkezlerden en 

uzaktaki noktayı bulmak için paralel bir azaltma kerneli uygulamışlardır. GPU'da 

thread’lerin boş kalmasını en aza indirmek için tarama-tabanlı sıkıştırma kerneli 

yazmışlardır. Bu kernelde, üçgen eşitsizliğini sağlamayan noktalar belirlenip bir diziye 

sıkıştırılmıştır. Bu sayede thread ayrılma da önlenmiştir. Üçgen eşitsizliği tek başına veri 

kümesinin demetlenmesini 2 kattan 17 kata kadar hızlandırmıştır. Üçgen eşitsizliği, seyrek 

bölgelerle ayrılmış yoğun bölgeleri olan veri kümeleri üzerinde (yoğun veri kümesi) benzer 

tarzda dağılmış veri kümelerinden (tekdüze veri kümesi) daha iyi performans sergileme 

eğilimindeymiş. Yazarlar, makalede üçgen eşitsizliğinin yüksek boyutlu veri kümeleri 
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kullanılırken daha az verimli olduğunu gözlemlemiştir. Deneylere göre CPU uygulamasına 

göre 42 kattan 100 kata kadar hızlanma sunmuştur. Yazarlar, özetle bellek erişim düzenlerini 

optimize etmişler, GPU belleğinden bütünleşik okuma ve yazmalar yapmaya dikkat 

etmişler, paralel azaltma uygulamışlar, uzaklık fonksiyonunu paralelleştirmişler, sıkıştırma 

ile üçgen eşitsizliği uygulamışlardır.  

3.7. DBSCAN demetleme algoritması (DBSCAN clustering algorithm) 

 DBSCAN algoritması, Ester ve ark. (Ester, Kriegel, Sander, & Xu, 1996) tarafından 

1996 yılında sunulmuştur. Algoritma Eps ve MinPts olmak üzere iki parametre gerektirir. 

Eps, en büyük komşuluk yarıçapı, MinPts ise bir veri noktasının “çekirdek nokta” olması için 

komşuluk bölgesinde bulunması gereken en az veri noktası sayısıdır. DBSCAN algoritması 

öncelikle birtakım tanımlar verilerek anlatılmıştır. 

 Tanım 1 : (Bir noktanın Eps komşuluğu) Bir p noktasının Eps komşuluğu 

 ile tanımlanır. Tanımdaki  fonksiyonu p ve q 

noktaları arasındaki uzaklığı ifade eder.  

 Tanım 2 : (Doğrudan yoğunluk erişilebilir) Eps ve MinPts koşulları altında, aşağıdaki 

şartlar sağlanıyorsa p noktası q noktasından doğrudan yoğunluk erişilebilirdir: 

1.  

2.  (q’nun çekirdek nokta olması koşulu) 

 Tanım 3 : (Yoğunluk erişilebilir) Eps ve MinPts koşulları altında,  

olmak üzere  noktalar zinciri varsa ve bu zincirde  noktası ’den doğrudan 

yoğunluk erişilebilirse)  p, q’dan yoğunluk erişilebilirdir. 

 Tanım 4 : (Yoğunluk bağlantılı) Eps ve MinPts koşulları altında, hem p hem de q bir o 

noktasından yoğunluk erişilebilirse p noktası q noktasına yoğunluk bağlantılıdır. 

 Tanım 5 : (Demet) D veri kümesi ve C bir demet olmak üzere, Eps ve MinPts koşulları 

altında C, D’nin boş olmayan ve aşağıdaki koşulları sağlayan bir alt kümesidir: 
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1.  Eğer  ve (Eps ve MinPts koşulları altında) p, q’dan yoğunluk erişilebilir ise, 

 

2.  (Eps ve MinPts koşulları altında) p, q’ya yoğunluk bağlantılıdır. 

 Tanım 6 : (Gürültü) Epsi ve MinPtsi i=1,2,…,k koşulları altında C1,C2,…,Ck D veri 

kümesinin demetleri olsun. D veri kümesinde herhangi bir Ci demetine ait olmayan noktalar 

kümesi “gürültü” olarak tanımlanır, . 

 DBSCAN algoritmasında rastgele bir noktadan başlanarak tüm noktalar kontrol 

edilir. Eğer nokta, önceden bir demete eklendiyse işlem yapılmadan sonraki noktaya geçilir. 

Aksi takdirde, noktanın komşuluğundaki noktalar bulunur. Komşu sayısı MinPts’den 

küçükse gürültü olarak işaretlenir ve sonraki noktaya geçilir. Komşu sayısı MinPts’den 

büyük veya MinPts’ye eşitse bir demet oluşturulur ve demete bu nokta ve komşuları eklenir. 

Sonra önceden bir demete eklenmemiş her bir komşu için komşuluğu araştırılarak onun 

komşuları bulunur. Komşuluğu araştırılan noktaların komşu sayıları MinPts’den büyük 

veya MinPts’ye eşitse demete eklenir. Bu işlemler eklenecek nokta kalmayana dek devam 

eder. Sonra veri kümesinden başka bir nokta seçilerek döngü tekrarlanır.  

 Böhm ve ark. (2009) (Böhm, Noll, Plant, & Wackersreuther, Density-based clustering 

using graphics processors, 2009) DBSCAN demetleme algoritmasının GPU tabanlı paralel bir 

uygulaması CUDA-DClust’ı ve benzerlik bulmada bir indeks yapısı kullanan daha da 

hızlandırılmış CUDA-DClust* versiyonunu sunmuşlardır. Uygulama, zincir kavramıyla 

desteklenen paralel demet genişletmeye; hiyerarşik bir indeks yapısı kullanımıyla 

hızlandırılabilen paralel en yakın komşu bulmaya; mikroişlemciler arasında verimli yük 

dengelemeye dayanmaktadır. Doğrudan yoğunluk erişilebilirlik ilişkisinin geçişli kapalılık 

hesaplaması zincir kavramıyla uygulanmıştır. Her SM bir demetin genişletilmesi için 

ayrılmıştır. Birçok demet genişletilmesi, farklı başlangıç noktalarından farklı zincirler 

aracılığıyla aynı anda başlatılmıştır. Genişletilecek tohum nokta paylaşılan belleğe 

yüklenmiştir. Bir tohum noktası, çekirdek nesne özelliğini belirlemek ve onun komşularını 

yeni potansiyel noktalar olarak işaretlemek için ele alındığında, tohum noktanın potansiyel 

komşularını eşzamanlı işlemek için birçok thread üretilmiştir. Koordinatlar saklayıcılara 
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yüklenmiştir. Ana program, işlenmeyen hiç bir nokta kalmayana dek GPU üzerinde 3 kernel 

başlatan bir döngüyü içermektedir: (1) CPU'dan GPU'nun global belleğine veri kümesi 

transfer edilir. (2) Veri kümesinden rastgele seçilen noktalardan yeni zincirler oluşturulur. 

(3) Demet Genişletme kerneli başlatılır. (4) Zincirlerin durumları GPU'nun global 

belleğinden CPU'ya transfer edilir. (5) Gerekiyorsa YeniTohumlar kerneli başlatılır. (6) 

Gerekiyorsa TohumYenidenDoldur kerneli başlatılır. (7) İşlenmemiş nesneler varsa 3. 

adımdan devam edilir. (8) Demet-ID'leri GPU'nun global belleğinden CPU'ya transfer edilir. 

Demet genişletme kerneli, CUDA-DClust'ın temel kernel metodudur ve çekirdek nokta 

özelliğinin belirlenmesini ve demetlerin geçişli genişletmesini uygulamaktadır. Tohum 

listesinin amacı, aktif demetin bir çekirdek nesnesi olduğu onaylanmış herhangi bir 

nesnesinden doğrudan yoğunluk erişilebilir nesneler için bir bekleme kuyruğu sağlamaktır. 

CUDA-DClust eşzamanlı çok sayıda zincirin demet genişletmesini uyguladığı için çoklu 

tohum listelerine sahiptir. Alan problemi yaşanmaması için bir tohum listesinin sahip 

olabileceği alan 1024 nokta ile kısıtlanmıştır. Zincirlerden biri bittiğinde, işlenmemiş bir 

nesneden yeni bir zincir başlatılmıştır. İşlenmemiş nesne yoksa bir zincir bölünmüştür. Bu 

sayede, sistemde çalışan neredeyse sabit sayıda thread’in hepsi aynı iş yüküne sahip olmuş 

ve yük dengesi sağlanmıştır. CUDA-DClust'ın performansını geliştirmek için, nesnelerin 

komşularını bulmayı sağlayan çoklu bir indeks yapısı önerilmiştir. CUDA-DClust* için 

demetleme yöntemini başlatmadan önce verinin parçalara ayrılması ve sıralanması, önerilen 

indeks yapısının kurulması gerekmiştir. İndeks kurulumu CPU'da uygulanmıştır. Veri 

kümesinin yanında dizin de GPU'nun global belleğine transfer edilmiştir. Bir nesnenin 

komşuları belirlenirken, thread kümesinin her biri veri kümesinin farklı bir parçası üzerinde 

çalışmıştır. Deneylere göre, CUDA-DClust, indeks desteği olmadan CPU uygulamasına göre 

10-15 kat; CUDA-DClust* indeks destekli CPU uygulamasına göre 3.5-15 kat hızlanma 

sunmuştur. Sonraki makalelerinde Böhm ve ark. (2009) (Böhm, Noll, Plant, Wackersreuther, 

& Zherdin, Transactions on Large-Scale Data- and Knowledge-Centered Systems I, 2009) 

yine DBSCAN için GPU programlama modeline uyan bir dizin yapısı ve benzerlik 

birleştirme yöntemi tanımlamışlar; fakat daha farklı bir şekilde uygulamayı geliştirmişlerdir. 

DBSCAN'i paralel benzerlik birleştirme ile desteklemişlerdir. Çok boyutlu dizin yapısı, geniş 

veri kümelerinde verilen bir sorgu nesnesine benzeyen nesneleri buluyormuş. Benzerlik 
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birleştirme yöntemi ise benzerlik bulmada kullanılıyormuş. CUDA kullanarak geliştirdikleri 

GPU-destekli DBSCAN uygulamasında algoritmanın çekirdek nesne özelliğinin belirlenmesi 

aşamasını ve doğrudan yoğunluk erişilebilirlik ilişkisinin geçişli kapalılığını hesaplayarak 

demet genişletme aşamasını paralelleştirmişler. İlk aşamayı benzerlik birleştirme ile 

desteklemişler. Çekirdek nesne özelliğini kontrol etmek için, her noktanın € komşuluğu 

içindeki nesnelerin sayısı hesaplanıyormuş. Bir (x,q) nesne çifti birleşme koşulunu 

sağladığında, nesnelerin sayısını arttırmada sadece q noktasının sayacını arttırmışlar. q 

noktası, thread’le ilişkilendirilen nokta olduğu için sayıcı[threadID] senkronize edilmemiş 

sıradan inc() operasyonu ile güvenli bir şekilde arttırabiliyormuş. Bu yöntem, sadece 1 sayacı 

arttırdığı için tüm nesneleri kontrol gerektirmiş. Uygulamada, veri kümesini ve veri noktası 

adedi büyüklüğündeki sayıcı matrisi global bellekte saklanmış. Her noktadan bir thread 

sorumluymuş. Her thread sorumlu olduğu noktayı global bellekten kendi saklayıcısına 

kopyalıyormuş. İteratif bir şekilde global bellekten bir veri noktası x, paylaşılan belleğe 

yükleniyormuş. Senkronize edildikten sonra bloktaki thread’ler x veri noktasıyla, sorumlu 

oldukları veri noktasının arasındaki mesafeyi hesaplıyorlarmış ve epsilon'dan küçük eşit 

olup olmadığını kontrol ediyorlarmış. Şart sağlanırsa, thread’in sorumlu olduğu noktanın 

sayıcısı inc() ile 1 arttırılıyormuş. Demet genişletme için doğrudan yoğunluk erişilebilirlik 

ilişkisinin geçişli kapalılığını hesaplamak gerekiyormuş. Geçişli kapalılığı hesaplamada 

Floyd-Warshall'ın GPU'da yüksek derece paralel versiyonu kullanılmış. Deneylere göre, 

GPU destekli DBSCAN, CPU versiyonuna göre 80 katı aşkın hızlanma sağlamış.  

 Çok büyük veritabanlarında DBSCAN kullanırken daha iyi bellek ölçeklenebilirliğine 

imkân tanıyan bir iyileştirme öneren Thapa ve ark. (2010) (Thapa, Trefftz, & Wolffe, 2010) ise 

GPU tabanlı DBSCAN programını CUDA kullanarak uygulamışlardır. Uygulamada, 

çekirdek nokta tespit edildiğinde Eps komşuluk noktalarının her biri bir kuyruğa 

atılıyormuş ve sırasıyla onların komşularının Eps uzaklığı içine düşüp düşmediği kontrol 

ediliyormuş. Kuyruktaki her nokta boyunca ilerleyip, demetteki her çekirdek noktadan 

yoğunluk erişilebilir olan tüm noktaları bularak algoritma bir demeti kurmaya başlıyormuş. 

Herhangi bir noktanın Eps komşuluğundaki komşularını bulmak için calcRow() kernelini 

yazmışlar. calcRow(), noktalar arasındaki uzaklıkları belirlemek için GPU üzerinde 

processPoint() kernelini çağırıyormuş. calcRow() fonksiyonu tarafından hesaplanan noktalar, 
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bitişiklik matrisi ile temsil edilmiş. Bitişiklik matrisi i ve j noktaları birbirine bitişikse (Eps 

veya daha az uzaklıktaysa) '1'; değilse (aralarındaki uzaklık Eps'den büyükse) '0' 

içeriyormuş. Yazarlar, bitişiklik matrisini bir kerede hesaplamak için herhangi bir anda 

birden çok veri noktasının diğer noktalarla karşılaştırılması paralelleştirmişler. Makalede iki 

GPU uygulaması yer almış: ilk GPU uygulaması ve yeni GPU uygulaması (M-GPU). İlk GPU 

yaklaşımında, her thread’e bir veri noktası veriliyormuş. Bu veri noktasının, veri 

kümesindeki diğer tüm noktalara karşı karşılaştırması hesaplanıyormuş. n adet eşzamanlı 

çalışan karşılaştırmaların her birinde nokta sırayla veri kümesindeki diğer noktalara karşı 

karşılaştırılıyormuş. Bu yaklaşımının bellek gereksinimi O(n2) mertebesindeymiş. M-

GPU’da, bir noktanın veri kümesindeki diğer noktalarla karşılaştırılması eş zamanlı 

yapılıyormuş; sonraki her nokta kendi karşılaştırmalar kümesini uygulamak için sırasını seri 

bir şekilde bekliyormuş. Bu yaklaşımın avantajı bitişiklik matrisinin sadece bir satırına 

ihtiyaç duyması ve böylece bellek talebini O(n) mertebesine azaltmasıymış. calcRow() bir kez 

tamamlandığında, sonuçlanan dizi satırı ve komşuların sayısının toplamı, cihaz belleğinden 

host belleğe kopyalanıyormuş. Bu bilgi, expandCluster() tarafından demeti genişletmek için 

kullanılıyormuş. İki GPU uygulaması da, orijinal seri versiyona göre 2-3 kat daha hızlı 

çalışmış. İlk GPU yaklaşımı, büyük veri setleri için M-GPU’dan biraz daha uzun 

sürüyormuş.  

3.8. EM (Expectation Maximization) demetleme algoritması (Expectation Maximization 

clustering algorithm) 

 EM algoritması her demeti bir olasılık dağılımı ile ifade eder. EM algoritması, E ve M 

adımlarından oluşur. E-adımında önceki iterasyondan Gauss model parametreleri 

kullanılarak her veri noktası için demet üyelikleri hesaplanır. Başlangıçta tahmini model 

parametreleri kullanılır. Her veri belli bir olasılık dağılımına göre demete atanır. M adımında 

yeni üyelikler kullanılarak parametreler güncellenir. Her EM aşamasından sonra sadece tek 

bir demet kalana dek veya belli bir demet sayısına ulaşana dek en benzer iki demet 

birleştirilir (Pangborn, 2010).  

 Kumar ve ark. (2009) (Kumar, Satoor, & Buck, 2009) EM demetleme algoritmasının 

GPU ile paralelleştirilmiş hızlı bir uygulamasını CUDA kullanarak sunmuşlardır. Yazarlar, 
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önce algoritmayı basit bir seviyeye ayrıştırıp her seviyedeki veri paralelliğini belirleyip 

hızlandırmışlardır. Son aşamada güncelleme denklemlerini matris dönüşümleri olarak ifade 

etmişlerdir. Her iterasyon için gereken matrislerin hesabını yapan 6 kernel yazmışlardır. 

Yazarlar kernellerde 6-11 arasında saklayıcı kullanmışlardır. Tüm matrisler global bellekte 

sütun tabanlı düzende saklanmıştır. Bu sayede, veriler bütünleşik bellek okumalarıyla 

paylaşılan belleğe yüklenmiştir. Deneylere göre, uygulama CPU uygulamasına göre 164 kat 

daha hızlı çalışmıştır. Çalışmada bloklara eşit iş dağıtımı yapılarak yük dengelemeye dikkat 

edilmiştir. Böylece bazı çekirdeklerin boşta kalıp performansı kötü etkilemesine engel 

olunmuştur. Yazarlar, kovaryans matrislerinin diyagonal olduklarını varsaymış; ancak bu 

durum boyutların istatistiksel olarak birbirinden bağımsız olmalarına imkan 

tanımamaktadır. Gauss karışım modelleriyle EM veri demetleme algoritmasının 

uygulamasını yapan bir başka çalışmada Pangborn (2010) (Pangborn, 2010) farklı olarak 

GPU'larla donatılmış bir PC küme sistemi kullanmıştır. Uygulamada, giriş verileri global 

bellekte sütun-tabanlı düzende saklanmıştır. Bu sayede, bütünleşik bellek okumalarına 

imkan sağlanmıştır. Veri kümesi GPU'lara eşit olarak bölünerek iş yükü dağıtılmıştır. 

Uygulama kök düğümdeki ana sistemin (İng. host) model parametrelerini ilklendirmesiyle 

başlamıştır. Her host thread, veri kümesinin kendi bölümünü ve ilgili GPU’ya başlangıç 

gauss model parametrelerini kopyalamıştır. E-adımı 2 kernele bölünmüştür. E-Adım1, bir 

demete ait bir veri noktasının log-olasılığını hesaplamakta ve ağırlıklandırmaktadır, 

parametreleri paylaşılan bellekte önbelleklemektedir. E-Adım2, tüm demetlerde üyelik için 

ağırlıklandırılmış her olasılığı bulanık bir olasılığa çevirmektedir. M adım, her denklem için 

bir kernel olmak üzere 3 CUDA kerneline bölünmüştür. Çok GPU’lu uygulamada kernel 

kovaryans yerine her eleman için toplam varyansı hesaplamaktadır. Host her GPU’dan 

kısmi sonuçları topladıktan sonra varyansı demet boyutuna bölmekle sorumludur. Üç M-

adım kernelinden sonra kovaryans matrisine çeviren, demet olasılıklarını hesaplayan, E-

adımındaki tüm olasılık hesaplamaları tarafından paylaşılan bir sabiti hesaplayan başka bir 

kernel başlatılmaktadır. EM aşaması tamamlandıktan sonra karışım modelindeki en benzer 

iki demet, kök düğümün master thread’i tarafından birleştirilmektedir. Deneylerde, CPU 

referans uygulamasına göre 73 kat hızlanma elde edilmiştir. 128 GPU'lu Tesla-güçlendirilmiş 

süper bilgisayar kullanıldığında %72 verimlilik ve 6286 kat hızlanma elde edilmiştir.  
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3.9. Sürü doküman demetleme algoritması  (Flocking document clustering algorithm) 

 Doküman demetleme problemi tabanlı sürü (İng. flocking) yönteminde zaman 

karmaşıklığı n2'dir. Sürü modeli, bir varlık sürüsünün hareketini taklit etme için biyolojik 

olarak esinlenmiş hesapsal bir modeldir. Kuş ve balık sürülerinde görüldüğü gibi grup 

hareketini temsil eder. Her birey, diğerleriyle herhangi bir iletişim olmaksızın sadece 

sürüdeki komşu üyelere ve çevresel engellere bağlı olarak az sayıda basit kurala göre 

davranırlar. Craig Reynolds'ın sürü modelinde 3 basit yönetim kuralı vardır (Cui, Charles, & 

Potok, 2012):  

1) Ayrılma: Komşularla çarpışmayı önlemek için yönetim.  

2) Hizalanma: Ortalama rota ve komşuların süratiyle eşleşmeye göre yönetim.  

3) Birleşme: Komşuların ortalama pozisyonuna göre yönetim. 

 Zhang ve ark. (2011) (Zhang, Mueller, Cui, & Potok, 2011) doküman demetleme 

problemi tabanlı sürü uygulamasını CUDA-destekli GPU'larla donatılmış bir küme 

bilgisayar üzerinde gerçekleştirmişlerdir. Yazarlar, iki temel probleme odaklanmışlar. İlk 

olarak, doküman demetleme algoritmalarında doküman benzerliğini saptamada 

yararlanılan dokümanların TF-IDF vektörlerini hesaplamayı, ikinci adımda ise TF-IDF-

benzeri benzerlik ölçütüne dayanarak bir seferde en az 1 milyon dokümanı demetlemeyi 

hedeflemişlerdir. Çoklu-Tür Sürü (MSF) simülasyonu uygulamışlardır. TF-IDF kavramı 

herhangi iki doküman arasındaki benzerliği ölçmek için kullanılmaktadır. Yazarlar, küme 

uygulamalarına daha uygun frekans-ters esas frekans (TF-ICF) denilen yeni bir terim 

ağırlıklandırma planı önermişlerdir. TF-ICF, işlenilen doküman koleksiyonları içindeki diğer 

dokümanlardan terim frekans bilgisi gerektirmiyormuş ve örneklemeyle ICF tablosunu 

önceden oluşturuyormuş. Sürü simülasyonunun temeli komşuluk bulmaymış. Komşuluk 

bulma için sanal simülasyon alanını dilimlere bölmüşler. Her düğüm, sadece aktif dilimde 

bulunan dokümanları ele almış. Düğümden düğüme mesajlarla doküman pozisyonları 

iletilmiş. Her iterasyonda doküman pozisyonlarının güncellenmesinden sonra tüm 

dokümanlar geçiş yapan, komşu ve iç doküman olmak üzere sınıflandırılmış. Yazarlar, doküman 

vektörlerini, TF-ICF tablosunda her kelimenin indeksine göre sıralı bir dizide saklamışlar. Bu 
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veri yapısı minimum bellek kullanımı sağlamış. İki dokümanın benzerliğini hesaplamak için 

bir kernel yazılmış. Her thread bloğu, 1 doküman çifti almış. Doküman vektörleri eşit bir 

şekilde bloktaki thread'lere bölünmüş. Her thread, atanan her TF-ICF değeri için diğer 

doküman vektörünün aynı indeksli girdi içerip içermediğini belirliyormuş. İkili (İng. binary) 

arama uygulanıyormuş. Her iterasyonun başlangıcında, her thread, komşuluk yapan, geçiş 

yapan dokümanların pozisyonlarını ve vektörlerini elde etmek için komşularına iki mesaj 

veriyormuş. Sonra, her iç doküman ve geçiş yapan doküman için belirli bir aralık içindeki 

komşu dokümanlarını arayan bir komşu bulma fonksiyonu devreye giriyormuş. Tüm 

komşular bulunduğunda, aktif thread'e ait ve onların saptanan komşularına ait 

dokümanların benzerlikleri hesaplanıyormuş. Sürü kurallarının uygulandığı sonraki adımda 

doküman pozisyonlarını güncellemek için benzerlik ölçümleri kullanılmış. Deneylerde, GPU 

kümeleri CPU kümelerinden 30'dan 50 kata kadar üstün performans sergilemiş.  

 Cui ve ark. (2012) (Cui, Charles, & Potok, 2012) doküman demetleme problemi 

tabanlı sürü uygulamasını CUDA ile hızlandırmışlardır. Reynold'un sürü modelindeki 3 

kural tüm bireylerin tek bir sürüye dönüşmesiyle sonuçlandığı ve yazarlar doğadaki iki veya 

daha fazla farklı tür sürülerine dönüşmeyi taklit için yeni bir Çoklu Tür Sürü (MSF) modeli 

sunmuşlar. Bu amaçla, sürü modelindeki kurallara 4. bir kural -nitelik benzerlik kuralı- 

eklemişler. Buna göre bir birey aynı niteliklere sahip bireylere yakın kalmaya çalışırken farklı 

niteliklere sahip bireylerden uzak duruyormuş. Dokümanlara bireyler gibi davranılıyormuş 

ve demetlerken MSF modeli kullanılıyormuş. GPU tabanlı doküman sürü algoritması için 2 

kernel yazmışlar. İlk kernel, her doküman çiftine bir thread veriyormuş (toplamda n2 thread) 

ve onlar arasındaki uzaklığın komşuluk içinde olup olmadığını belirliyormuş. Aralarındaki 

uzaklık eşikten küçükse global bellekteki kosinüs benzerlik matrisine göre doküman 

karşılaştırma yapılıyormuş. Uzaklık değeri yeterince küçükse dokümanlar benzer farz edilip 

dokümanlar sürü arkadaşı kabul ediliyormuş. Benzer dokümanlar ayrılma, birleşme ve 

hizalanma kurallarını kullanarak; benzemeyen dokümanlar sadece ayrılma kuralı kullanarak 

rotalarını belirliyorlarmış. Popülasyon üzerinde etkisi olan her doküman hesaplanınca, ikinci 

kernel çalışıyormuş. İkinci kernel, n thread üretiyormuş, her thread bir dokümanın rotasını ve 

pozisyonunu güncelliyormuş. Burada, simülasyona rastgelelik eklenmiş, hareket 

hesaplamalarının %15'i rastgeleymiş. Sisteme rastgele eleman ekleme, dokümanların diğer 
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sürü arkadaşlarının araştırmasındaki çözüm uzayını uygun bir şekilde araştırmasını 

sağlıyormuş. İkinci kernel çalışmayı bitirdiğinde, bir nesil sonlanarak sıradaki başlıyormuş. 

Uygulamada, GPU'nun global belleğinden sık okumalar yapılmış. Hızlı erişim için bazı 

doküman terimleri paylaşılan bellekte tutulmuş. Deneylerde, 1000 dokümanlı GPU 

uygulaması CPU versiyonundan yaklaşık 60 kat hızlı çalışmış. 1000 dokümandan sonra 

performans neredeyse doğrusal bir şekilde düşmüş. Bu durum popülasyon büyüdükçe 

global bellek erişim gecikmesinin artışından kaynaklanmıştır. 

4. Sonuç (Conclusion) 

 Algoritmaların GPU ile güçlendirilmiş versiyonlarını uygulamak için araştırmacılar, 

ele aldıkları algoritmaların çok zaman tüketen adımlarını belirleyip paralelleştirilebilir olup 

olmadıklarını incelemişlerdir. Paralelleştirilebilir bölümler, GPGPU arayüzünün kısıtlarına, 

sağladığı esnekliklerine, bellek yapılarına, işlemler için sunduğu avantaj ve dezavantajlara 

bağlı tasarlanmış ve performansı artıracak yaklaşımlar uygulanmıştır.  

 Literatürdeki çalışmalara bakarak veri demetleme algoritmalarının performansını 

CUDA kullanıldığında maksimize etmek için dikkat edilmesi gerekenleri sıralarsak:  

 Veriyi parçalayarak, boyutlarından bölerek hızlı, küçük belleklerden yararlanmak.  

 Global bellek kullanılırken bütünleşik bellek okumaları yaparak gecikmeyi azaltmak.  

 Thread ayrılmayı engellemek için dallanmaları azaltmak, gerekirse GPU’da sıralama 

yaparak, bir warp'taki tüm thread'lerin aynı komutu çalıştırmalarını sağlamak. 

 Thread bloklarına eşit iş dağıtarak yük dengelemeyi sağlamak.  

 Çok sık erişilecek küçük verileri saklayıcılarda tutmak. 

 Thread başına kullanılacak saklayıcı sayısını dikkatli belirlemek.  

 Sadece okuma amaçlı kullanılacak verileri sabit bellekte, yetmiyorsa doku bellekte tutarak 

bunların hızlı önbelleklenebilir mekanizmasından faydalanmak.  
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 Veri, boyut, demet sayısını sınırlandırmamak için parçalara bölerek işleme; boyut azaltma 

gibi teknikler kullanmak.  

 Hesaplama sayısını azaltmayı sağlayan üçgen eşitsizliği gibi ilkelerden faydalanmak.  

 Verileri GPU’da bütünleşik okumaya uyan sütun-tabanlı biçime dönüştürmek.  

 CPU'nun verileri transfer edebileceği sistemlerin bant genişliği sınırlı olduğu için çok 

gecikmeli olan CPU'dan GPU'ya veri transferlerini en aza indirmek.  

 Doluluğu sağlamak için kernellerde blok boyutunu 32'nin katı olarak seçmek.  

 Paylaşılan belleğin kullanımında yığın çatışması oluşmamasını sağlamak.  

 Yarış koşullarını (yazmadan-önce-okuma, okumadan-önce-yazma gibi) önlemek için 

thread senkronizasyonu yapmak ve çağrıları dikkatlice yerleştirmek.  

 Kernellerin verimli çalışması için grid, blok ve thread sayısını dikkatli belirlemek.  

 Veri demetleme algoritmalarının GPU ile hızlandırılmış versiyonlarının geliştirilmesi 

son 5-6 yılda ağırlık kazanmıştır. Konuyla ilgili GPU versiyonu geliştirilmemiş demetleme 

algoritmalarına örnek CLARA-CLARANS, BIRCH, CURE, ROCK, CHAMELEON, OPTICS, 

DENCLUE, TURN, STING, CLIQUE verilebilir. Ayrıca DBSCAN, EM ve CAST GPU 

versiyonu mevcut fakat daha fazla geliştirmeye açıktır. 
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