
AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9‐Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x
http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344

Received : 03.04.2018 Editorial Process Begin: 28.04.2018 Published: 03.10.2018

An Experimental Evaluation of the Effect of SOLID Principles to

Microsoft VS Code Metrics

Osman TURAN, Ankara University Graduate School of Natural and Applied Sciences,

osmanturan@gmail.com

Ömer Özgür TANRIÖVER, Faculty of Engineering Computer Engineering Department Ankara

Turkey, Asst. Prof Dr. Özgür Tanrıöver, tanriover@ankara.edu.tr

ABSTRACT Software maintenance is necessary for reasons such as changes in user needs, changes in the

operating conditions of the system due to changes in the infrastructure, the occurrence of

unforeseen errors. The suitability of the software for maintenance operations is a significant

influence in reducing the cost. Using only basic object oriented programming concepts do not

show that we are writing maintainable code in our applications. Object oriented design

principles such SOLID are about reducing dependencies and increasing maintainability.

ISO/IEC 9126 is about maintainability but ISO/IEC 9126 is not clear about whether all inputs

to measurement should be used together in conjunction or whether they should be used as

appropriate or available. Indeed, ISO/IEC 9126 provides no guidance, heuristics, rules of thumb,

or any other means to show how to trade off measures, how to weight measures or even how to

simply collate them. In this study each sub-characteristic of ISO/IEC maintainability with help

of Visual Studio (VS) code metric tool is assessed. The focus of this assessment is on

maintainability and its sub-characteristics like analyzability, testability, changeability and

stability. Before doing an analysis, each sub-characteristics of maintainability part of ISO/IEC

9126 standard are mapped to five VS code metrics for measurement of characteristics. This work

shows the effect of object oriented design principles (SOLID) to the maintainability, complexity

and flexibility of the code while associating ISO/IEC, VS code metric and SOLID.

Keywords: Object Oriented Design Principles, SOLID, ISO/IEC 9126, Code Metrics.

SOLID İlkelerinin Microsoft VS Code Metriğine Etkisinin

Deneysel Olarak Değerlendirilmesi

ÖZ Yazılımın bakımı, kullanıcı ihtiyaçlarındaki değişiklikler, altyapıda meydana gelen değişiklikler,

sistemin çalışma koşullarındaki değişiklikler, öngörülemeyen hataların ortaya çıkması gibi

nedenlerle gereklidir. Yazılımın bakım işlemleri için uygunluğu maliyeti düşürmede önemli bir

etkendir. Sadece temel nesne tabanlı programlama kavramlarını kullanmak, uygulamalarımızda

sürdürülebilir kod yazdığımızı göstermez. SOLID gibi nesneye yönelik tasarım prensipleri

bağımlılıkları azaltmak ve yazılım bakımını artırmak ile ilgilidir. ISO/IEC 9126 bakım

yapılabilirlikle ilgilidir fakat ISO/IEC 9126 ölçüme ilişkin tim girdilerin bir arada mı yoksa ayrı

olarak mı kullanılmaları gerektiği konusunda net değildir. Nitekim, ISO/IEC 9126 pratik olarak

veya deneysel tarzda yazılım ölçümlerinin nasıl yapılacağı, bu ölçümlerin nasıl basitçe

toplanacağı, ölçümlerin nasıl değiştirilebileceği konusunda rehberlik sağlamaz. Bu çalışmada,

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
8

Visual Studio (VS) kod metrik aracı yardımıyla ISO / IEC bakım yapılabilirliğin her alt-özelliği

değerlendirilmiştir. Bu değerlendirmenin odağı sürdürülebilirlik ve analiz edilebilirlik, test

edilebilirlik, değiştirilebilirlik ve kararlılık gibi alt özellikler üzerine odaklanmaktadır. Bir analiz

yapmadan önce, ISO / IEC 9126 standardının bakım yapılabilirlik bölümünün her bir alt-

karakteristiği özelliklerin ölçümü için beş VS kod metriğine eşlenmiştir. Bu çalışma, nesneye

yönelik tasarım ilkelerinin (SOLID) ISO / IEC, VS kod metriği ve SOLID'i ilişkilendirerek

kodun bakım yapılabilirliği, karmaşıklığı ve esnekliği üzerindeki etkisini gösterir.

Anahtar Kelimeler: Nesne Yönelimli Programlama Prensipleri, SOLID, ISO/IEC 9126, Kod Metrikleri.

1. Introduction

Software-related post-works hold an important place in IT departments. A software system

that does not need change over time is unthinkable. Software maintenance is necessary for

reasons such as changes in user needs, changes in the operating conditions of the system due

to changes in the infrastructure, the occurrence of unforeseen errors. According to the

literature, maintenance typically consumes about 40 to 80 percent (60 percent average) of

software costs. [1]. Therefore, it is probably the most important life cycle phase.

The suitability of the software for maintenance operations is a significant influence in

reducing the cost. Quality and maintenance have an interesting relationship. Trying to

improve one quality attribute often degrades another. For example, attempts to improve

efficiency often degrade modifiability. [1]. But object oriented design principles can overcome

of this problem. Using only basic object oriented programming concepts do not show that we

are writing maintainable code in our applications. So any architect, developer, or information

technology (IT) professional who designs, builds, or operates applications and services should

know how to implement object oriented programming system (OOPS) and use them in right

manner, that is where five object oriented principles (also called as SOLID Principles) comes

to mind. SOLID is an acronym for the first five object oriented design principles (Single

responsibility, Open-closed, Liskov substitution, Interface segregation, Dependency

inversion) introduced by Robert C. Martin [2]. These principles, when combined together,

make it easy for a programmer to develop software that are easy to maintain and extend over

time. [3]. Metric changes on the code are measured by Microsoft Visual Studio (VS) Code

Metrics tool. Code metrics in Visual Studio is a tool for measuring the quality and complexity

of our code. It provides us various metrics whose values validate our code. [18][23]. VS code

metrics are used because we did all the code enhancements on VS.

While maintainability index can give an opinion for determining the maintainability of the

source code of a system, it is hard using the maintainability index to the desired effect. Because

computed value of the maintainability index does not provide clues about characteristics of

maintainability or it is not give clue about taking an action to improve this value. The

maintainability index has been proposed objectively determine the maintainability of software

systems based on the status of the corresponding source code. In this study each sub-

characteristics of ISO/IEC maintainability with help of Visual Studio (VS) code metric tool is

assessed. The evaluation was made by associating the metrics with the VS code metric results

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
O. TURAN, Ö. Ö. TANRIÖVER

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
9

for each maintainability characteristic. Before doing an analysis, each sub-characteristics of

maintainability part of ISO/IEC 9126 standard are mapped to five VS code metrics for

measurement of characteristics.

Specifically, this study contains an assessment of the effect of SOLID principles on the

Visual Studio code metrics using a human resource management system project and named

as HRS. The system developed with two different ways, without and with solid principles. We

captured the code metrics of HRS in the default design and after the implementation of these

principles in the second design. We compare the results with the context of the improvements

and benefits obtained from the implementation. At the same time although the ISO/IEC 9126

has some usefulness about counting and assessing metrics [20], the results have been assessed

within the scope of ISO/IEC 9126 [19], which proposes six main factors that determine overall

quality are maintainability, usability, efficiency, portability, functionality and reliability. The

focus of this assessment is on maintainability and its sub-characteristics like analyzability,

testability, changeability and stability.

The paper is organized as follows. Section 2 provides literature analysis on SOLID

principles and code metrics. Section 3 present a brief overview of the SOLID principles and

VS code metrics. Section 4 and its sub-sections recapitulate the ISO/IEC 9126 standard for

software product quality, focusing on the characteristics of maintainability and provide the

application method of design principles to classes and application results of code metrics.

Section 5 compares and discusses with related works. The last section summarizes the main

findings.

2. Related Work

Although separately each of SOLID design principles as Object Oriented Design Principles

have been investigated widely such as effect of quality on software, rules and techniques in

object-oriented programming, contribution to maintenance cost etc. There are not much

published papers include all SOLID principles and addressing all of these principles which

deal with the software effect with Visual Studio code metrics. In paper [4] Al-Ahmad

contribute a framework for conceptual modelling and focuses on the conceptual modelling

facet of inheritance and suggests better support for it in object oriented programming. He has

examined the influence of the Liskov Substitution Principle, interfaces, separate type, and class

hierarchies on conceptual modeling. There are some papers mentioned that Liskov

Substitution Principle in such papers as [7], [9], [11]. In [5] Zotos presents object-oriented

design principles to solve the software crisis between mathematics and computer science. He

used all of the design principles contained in this paper. These principles show the right

direction of designing and helps in avoiding costly mistakes at the designing stage. In order

to write quality code, it is needed to understand the principles and methodologies behind the

language.

Deligiannis, Shepperd, Roumeliotis and Stamelos made an empirical investigation of

object-oriented design heuristic for maintainability [6]. They aim two goals. First, to investigate

the impact of a design heuristic on the maintainability of object-oriented designs. The second

goal is to investigate the relationship between OO design heuristic and metrics. A good design

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
10

allows us to easily plug-in new functionality in terms of new classes and new methods without

a need to re-implement the results of the previous iteration cycles. In paper [8] Bavota, De

Lucia and Oliveto try identifying extract class refactoring opportunities using structural and

semantic cohesion measures. They propose an Extract Class refactoring method based on

graph theory that exploits structural and semantic relationships between methods. They

summarize that during software development the classes of a system undergo continuous

modifications making the source code more complex and drifting away from its original

design. In particular, due to strict deadlines programmers do not always have a bunch of time

to make sure everything conforms to object oriented programming (OOP) guidelines. When

the added responsibility grows and breeds, the class becomes too complex and its quality

deteriorates. Paper [10] presents an observational study on students’ ability to understand and

apply design patterns and used Object-Oriented Design Principles, such as Open-Closed,

Single Responsibility, Dependency Inversion, Interface Segregation and Liskov Substitution

principles. Paper show that the majority of students correctly identified maintenance problems

as the main symptom of a poor architecture that according to the general belief that design

patterns solve maintenance issues.

Paper [12] introduce an algorithm for the discovery of refactoring and assess Dependency

Inversion Principle use Liskov’s Substitution Principle and Design by Contract requirements

on class contract preservation during sub- classing to become clearer of implementation

inheritance. Context aware mobile patient monitoring framework development issue is

discussed in [13]. As the paper, design patterns can be used as a method to document

application frameworks and design principles are good ideas help software developers to

build better design. Design patterns are used as tools for applying the design principles. Five

design principles that takes place in this paper support reusability and extensibility. Paper [14]

makes models for predicting extract subclass refactoring using object oriented quality metrics.

Talk about refactoring that it has several benefits such as enhancing the code’s

understandability, maintainability, testability. Therefore, design principles provide these

properties. Paper [15] try to identify and apply of extract class refactoring in object oriented

systems. It talks about a class that should implement only one concept and should only change

when the concept it encapsulates evolves.

3. Definition of Solid Design Principles and Used VS Code Metrics

The Single Responsibility Principle – S means that there should never be more than one

reason for a class to change [2]. If there is more than one motive for changing a class, then that

class is assumed to have more than one responsibility, which results as high coupling. This

kind of coupling leads to fragile designs that can break in unexpected ways for any change

requirements [16].

The Open Close Principle – O requires software entities like classes, modules and functions

should be open for extension, but closed for modification [2]. An entity can allow its behavior

to be extended without modifying its source code or a class should be easily extendable

without modifying the class itself. When requirements change, you extend the behavior of

such modules by adding new code, not by changing old code that already works.

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
O. TURAN, Ö. Ö. TANRIÖVER

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
11

The Liskov Substitution Principle – L requires derived type must fully support the

substitution of their base types. [2] Every subclass/derived class should be substitutable for its

base/parent class. If any module is using a Base class then the reference to that Base class can

be replaced with a Derived class without affecting the functionality of the module. While

implementing derived classes, derived classes just extend the functionality of base classes

without replacing the functionality of base classes.

The Interface Segregation Principle – I requires clients should not be forced to depend upon

interfaces that they do not use [2]. When a client depends upon a class that contains interfaces

that the client does not use, but that other clients do use, then that client will be affected by the

changes that those other clients force upon the class.

The Dependency Inversion Principle – D requires High Level Modules should not depend

upon Low Level Modules. Both should depend upon abstractions. Abstractions should not

depend upon details. However, details should depend upon abstractions [2]. Entities must

depend on abstractions not on concretions. It states that the high-level module must not

depend on the low-level module, but they should depend on abstractions.

Then how important are these principle? Is one more important than the other is or are they

all equally? In this experiment we will to address these questions.

On the other hand, code complexity deals with the lack rate and robustness of the

application. Complex code is difficult to test and it is difficult to maintain. When a developer

writes a code, developer must adhere boundary values of metrics to ensure the code is well

written, understandable and maintainable. Code Metrics is an important measure that let us

understand the complexity and maintainability of the code. These metrics are specified that

estimation how error prone the program source code is due to its complexity or which are

most likely to cause problems in the future. Developer can understand which classes, which

methods, which module should be reworked or refactored. Visual Studio uses five code

metrics to help users understand their code better [18] [23]. They are maintainability index,

cyclomatic complexity, the depth of inheritance, class coupling and the line of code.

Maintainability Index (MI) is a metric aimed at assessing software maintainability. The

Maintainability Index was introduced at the International Conference on Software

Maintenance in 1992 [17]. MI has evolved into numerous variants. It has been successfully

applied to a number of industrial strength software systems. It is based on three code metrics:

Namely the Halstead Volume, the Cyclomatic Complexity and Lines of Code. It is based on

the following formula [18]:

Maintainability Index (MI) =

 MAX (0, (171 - 5.2 * ln (Halstead Volume)

 - 0.23 * Cyclomatic Complexity

 - 16.2 * ln (Lines of Code)) * 100 / 171)

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
12

Maintainability Index (MI) is a composite metric that incorporates a number of traditional

source code metrics into a single number that indicates relative maintainability. The MI is

comprised of weighted Halstead Volume (HV), McCabe's cyclomatic complexity (CC) and

Lines of Code (LOC). MI calculates an index value between 0 and 100 that represents the

relative ease of maintaining the code. A high value means better maintainability. As can be

seen from the formula increasing of the cyclomatic complexity or line of code reduces the value

of maintainability index. As pointed by Van der Meulen and M.A Revilla [25], there are very

strong connections between LOC and HV, LOC and CC. The study provides an approximate

expression that have been used in our study for MI value.

The Cyclomatic Complexity (CC) measures the structural complexity of the code. It is

created by calculating the number of different code paths in the flow of the program. Depends

on how many different control flow of your code can execute depending on various inputs. A

program that has complex control flow will require more tests to achieve good code coverage

and will be less maintainable. The cyclomatic complexity definitely reveals a code smell.

The Depth of Inheritance indicates the number of class definitions that extend to the root of

the class hierarchy. The deeper the hierarchy the more difficult it might be to understand

where particular methods and fields are defined or redefined. The idea is that if more types

exist in an inheritance hierarchy, the code will likely be more difficult to maintain as a result.

However, a high depth of inheritance can also indicate a greater level of code reuse. This

means that it is difficult to say what a good depth is. Remark that, (Microsoft) MS Visual Studio

does include a code analysis rule, which generates a warning when an inheritance hierarchy

is more than four levels deep.

The Class Coupling measures the coupling to unique classes through parameters, local

variables, return types, method calls, generic or template instantiations, base classes, interface

implementations, fields defined on external types, and attribute decoration. Good software

design dictates that types and methods should have high cohesion and low coupling. High

coupling indicates a design that is difficult to reuse and maintain because of its many

interdependencies on other types. If we have a class that does not reference other class then its

class coupling will be zero whereas if we refer to various classes in our class (like creating

complex type properties) then it will increase class coupling.

The Lines of Code indicates the approximate number of lines in the code. The count is based

on the intermediate language code and is therefore not the exact number of lines in the source

code file. A very high count might indicate that a type or method is trying to too much work

and it should be split up. It might also indicate that the type or method might be hard to

maintain.

4. Mapping of VS Metrics to ISO/IEC 9126 Software Product Quality

ISO/IEC 9126 defines a quality model that comprises 6 characteristics and 27 sub

characteristics of software product quality. ISO/IEC 9126 also defines one or more metrics to

measure each of its sub characteristics [24]. For example, the quality level of a software

product’s maintainability can be represented by measured values of its sub characteristics. The

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
O. TURAN, Ö. Ö. TANRIÖVER

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
13

ISO/IEC 9126 standard is divided into four parts. Quality model, internal metrics, external

metrics and quality in use metrics. The first three parts are concerned with describing and

measuring the quality of the software product, the fourth part evaluates the product from the

user point of view. Internal quality is believed to impact external quality, which in turn affects

quality in use.

Internal quality is assessed based on four characteristics (functionality, efficiency,

maintainability, portability) and their respective sub-characteristics. These are evaluated by

employing a set of metrics. For instance, the quality level for maintainability takes into account

the measured values of four sub-characteristics. The above quality characteristics are abstract

concepts and therefore not directly measurable and observable. Each of them is characterized

by a set of sub-characteristics.

In this study, we focused on the maintainability characteristics that sub-characterized:

• Analyzability: Degree to which the software product can be diagnosed for deficiencies or

causes of failures in the software, or for the parts to be modified to be identified.

• Changeability: Degree to which the software product enables a specified modification to

be implemented or the ease with which a software product can be modified.

• Stability: Degree to which the software product can avoid unexpected effects from

modifications of the software.

• Testability: Degree to which the software product enables modified software to be

validated.

However, in new version of ISO/IEC, modularity and reusability are added to sub-

characteristics [21].

• Modularity: Degree to which a system or computer program is composed of discrete

components such that a change to one component has minimal impact on other

components.

• Reusability: Degree to which an asset can be used in more than one software system or in

building other assets.

ISO/IEC 9126 is not clear about whether all inputs to measurement should be used together

in conjunction or whether they should be used as appropriate or available. Indeed, ISO/IEC

9126 provides no guidance, heuristics, rules of thumb, or any other means to show how to

trade off measures, how to weight measures or even how to simply collate them [20].

Since our main aim was to evaluate maintainability coupled with MS VS standard

environment, each sub-characteristics of maintainability part of ISO/IEC 9126 standard are

mapped to five VS code metrics for measurement of characteristics. The changeability

characteristic of a system is linked to properties such as complexity of the source code. Source

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
14

code complexity is measured in terms of cyclomatic complexity. The analyzability

characteristic of a system is effected from lines of code (LOC) and complexity attributes. The

testability characteristic of a system is effected from complexity and LOC attributes. Stability

is effected from coupling. A larger system requires, in general, a larger effort to maintain.

Higher size causes lower analyzability and it is hard to understand the system. The complexity

property of source code refers to the degree of internal disorder of the source code. Large code

units are complex. In addition, complex units are difficult to analyze and difficult to test. İf

there is duplication in the source code then it is difficult to maintain it. Excessive duplication

makes a system larger than it needs to be. In addition, it effects the analyzability and

changeability. VS code metrics and the mapping of system characteristics onto these properties

is shown in Table 1 [22].

Table 1. Mapping system characteristics onto code metrics

Maintainability Sub-Characteristics Code Metrics Value

Analyzability 1. Lines of Code (LOC)

2. Cyclomatic Complexity (CC)

3. Number of Method & Weighted Methods in Class (WMC)

Changeability 1. LOC

2. CC

3. Depth of Inheritance (DIT)

Stability 1. Coupling

Testability 1. LOC

2. CC

Modularity 1. Coupling

2. DIT

Reusability 1. Coupling

2. WMC

4. The Effect of Application of SOLID Design Principles

The project is a Human Resource Management program. It is working on n-tier architecture.

The project has modules about employee which employee data management, personnel

tracking, accounting and payroll system, reporting etc. Changes made in the project were

made in business and UI layer in the architecture. When we take the class diagram in the

Microsoft Visual Studio, we see that the software has 48 class in working layer. It is indicated

Figure 10.

In the first phase of work, Visual Studio (VS) code metric tool started and default metric

values of the whole project received before making any change. It is shown on the Table 2. In

table 2, Personnel refers to the whole solution. General, Report and Payroll represent a project

in the solution. ListUpdate, takeFormData and dataSave indicates a method. The modules to

be modified are selected within the range of low MI values. İn the first stage, only one method

was modified according to the SOLID design principles. The changes were made in order.

Modified method is about subsistence money calculation. The task of method is to get form

data and assign these data to list object. The method does checks about journal control when

doing these operations. There are several if blocks in the method. Code metric values

recalculated after every change made.

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
O. TURAN, Ö. Ö. TANRIÖVER

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
15

Table 2. VS Code Metrics Result

 MI CC DIT Coupling LOC

Personnel 73 1593 5 271 5632

Personnel. General 71 97 5 50 428

Personnel. Report 68 109 5 93 365

Personnel. Payroll 73 452 5 79 1835

listUpdate 49 5 15 24

takeFormData 40 6 21 46

dataSave 49 5 15 24

Single Responsibility Principle: To solve a problem, find the sub problems in the domain

that working in. Divide each sub problem into sub-sub-problems until reaching the point

where such a mini problem has just one single task left. Then solve each of these mini problems

in its own class. Initially, we had a method that used to retrieve form data and bind them to

list items. It is shown in the Figure 1. In addition, there were “if blocks” in the method for

controlling data. Controlling data is for assurance of input validation.

Figure 1. Initial version on SRP

To implement this principle within the method, list items are declared in another class. It is

invoked from there. All controls such as steps for form control and assignment of data to list

items (controlListData) which exist in the single incohesive large method is separated to

different cohesive methods. Each new mehod is simple and has just one single responsibility.

Result classes after applying SRP is shown in Fiure 2. At the end of single responsibility

principle refactor, Visual Studio code metric tool was run again. Maintainability index

increased by 7 percent. In addition, class-coupling value decreased. On the other hand,

according to ISO/IEC 9126 system characteristics stability, modularity and reusability have

increased. Because coupling value has decreased.

Figure 2. After applying refactoring on SRP

List<string> formItem

public List<string> retrieveFormData()

retrieveFormData

public List<string>
retrieveFormData()

public controlFormData()

public controlListData()

retrieveFormData

List<string> formItem

ListofFormData

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
16

Open Closed Principle: An entity can allow its behavior to be modified without altering its

source code. Modules that adhere to open-closed principle have two primary attributes. First

is open for extension that it is possible to extend the behavior of the module as the

requirements of the application change. Second is closed for modification that extending the

behavior of the module does not result in the changing of the source code or binary code of

the module itself. There are controls about detecting journal entries and filtering operations

about type of journal data in the modified class.

Figure 3. Initial class before applying OCP

To implement open closed principle all controls and filtering processes were reorganized.

To do this, we put the implementation of filtering or implementation of controlling in another

class. After applying implementation, we do not have to modify the new class for filtering or

for controlling new criteria. Because the behavior of the requested operations are marshalled

to the new class. Moreover, we can extend the behavior of the new class to support new

criteria. Because all we simply have to do is, pass in a new class. Therefore, it is open for

extension. Subclass provides extension by not putting the abstraction in codified interfaces but

in over ridable behavior. It often leads to composite systems and overall realizes more

opportunities for reuse. At the end of open closed principle implementation, Visual Studio

code metric tool was run again. Maintainability index (MI) increased by about 4.5 percent.

Cyclomatic Complexity did not change, class coupling decreased by about 6.25 percent. İn

addition to MI, stability, modularity, reusability, analyzability and changeability have

increased. Because some of them depend on coupling and coupling is decreased. In addition,

because of the ease of adding new features or changing existing ones analyzability and

changeability characteristics were positively affected.

public void Account()

JournalFilter : IFilter

public void Account()

Book : ILedger

public void Account()

Ledger : ILedger

public void Account()

interface ILedger

public void Account()

Journal : ILedger

public Message<string> JournalEntries()

public FilterResult<string> FilterJournalData()

Ledger

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
O. TURAN, Ö. Ö. TANRIÖVER

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
17

Figure 4. Diagram after applying OCP

Liskov Substitution Principle: References to base classes must be able to use objects of

derived classes without knowing it. If a software has a base class and a few number of

subclasses, the rest of the code should always refer to base and not to subclasses. This principle

is just an extension of the Open Close Principle.

Figure 5. First class before applying LSP

Initially, we had class calculateAccount that contains methods about book of account for

accounting monetary transactions. However, method of calculation can be differ between

accounts. In addition, we had another class getAccount derived from calculateAccount class.

In the method of getAccount class calculations are done as type of account information.

Method of calculation for BookAccount, Transaction and Entries was diverging according to

the account information with if blocks. For applying this principle, calculateAccount is re-

written as the type of account information and calculateAccount class is derived from the

related class.

public void Filter(string entry)

interface IFilter

public void Account()

BookFilter : IFilter

public void Account()

LedgerFilter : IFilter

void TransferAccount()

interface ITransferAccount

public void

TransferAccount()

public void
TransferAccount()

JournalTransfer:

ITransferAccount

public void

Calculate(Account acc)

Account CalcBookAccount :

ICalcType

BookTransfer :

ITransferAccount

Public AccountInfo TransferBookAccount()
Account CalculateBookAccount(Account acc)

Account CalculateTransaction(Account acc)

Account CalculateEntries(List<string> entry)

CalculateAccount

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
18

Figure 6. Diagram after applying LSP

After making changes for Liskov Substitution Principle, maintainability index of the project

increased by about 1.3 percent. However, cyclomatic complexity increased by about 0.15

percent. If we assess this according to ISO/IEC 9126, base types can be reused and the derived

types can be changed.

Interface Segregation Principle: No client-code-object should be forced to depend on

methods it does not use. Each code object should only implement what it needs, and not be

required to implement anything else. The interface segregation principle is all about reducing

code objects down to their smallest possible implementation and removing dependencies the

object does not need to function properly. Because of applying this principle is to have small

and focused interfaces that define only what is needed by their implementations. For

implementing this principle in our project, the main interfaces that keep the journal records

are divided into interfaces that are smaller but contain no unnecessary objects. Initially, we

had interface IAccountRecord that contains bookRecord, ledgerRecord and journalRecord

methods. But every method differ from anothers in context. To apply this principle,

IAccountRecord is divided to IBookRecord, ILedgerRecord and IJournalRecord interfaces and

every method is derived from related interface. At the end of the interface segregation

principle implementation, Visual Studio code metric tool was run again. There was no change

in the expectation that the principle would increase the maintainability index. However,

Cyclomatic Complexity increased by about 0.4 percent. Class coupling decreased. Therefore,

the goal of this principle is helping decouple the application so that it is easier to maintain. It

is improving flexibility and possibility of reuse.

public void

Calculate(Account acc)

interface ICalcType

public void

Calculate(Account acc)

Account CalcTransaction :

ICalcType

public void

Calculate(Account acc)

Account CalcEntries :

ICalcType

public Record

LedgerRecord(List<strin

g> rec)

interface ILedgerRecord

public Record

JournalRecord(List<stri

ng> rec)

JournalRecord

:JournalRecord

public Record

BookRecord(List<string

> rec)

public Record

LedgerRecord(List<stri

ng> rec)

interface IBookRecord

LedgerRecord

:ILedgerRecord

public Record

BookRecord(List<strin

g> rec)

BookRecord

:IBookRecord

public Record

JournalRecord(List<strin

g> rec)

interface

IJournalRecord

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
O. TURAN, Ö. Ö. TANRIÖVER

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
19

Figure 7. Diagram after applying ISP

Dependency Inversion Principle: Primarily concerned with reducing dependencies

amongst the code modules. It needs the low-level objects to define contracts that the high-level

objects can use without the high-level objects needing to care about the specific

implementation the low-level objects provide. In the project there are classes and interfaces for

reporting and notification. Reports are written in the database or in different formats.

Notification was using as sms or e-mail. To implement this principle the report generation task

and printing part separated to different interfaces. On the notification part, an abstraction is

introduced and notification methods implement it. As a result, it is allowed that both high

level and low level classes to rely on abstractions. At the end of Dependency Inversion

Principle implementation, Visual Studio code metric tool was run again. Maintainability index

increased as expected. Already expected that this principle be primarily concerned with

reducing dependencies. As a result of interface separation, high-level policy modules and low-

level detail modules were reusable and maintainable.

For dependency inversion principle, a class about worker amount and transfer to balance

sheet is changed. First version is shown on Figure 8. In the first version the high level

TransferAmount class is depend on the low level PersonnelAccount class. This increase the

coupling. The sender and receiver references the PersonnalAccount type in the

TransferAmount class. Therefore, if another account types are not taking place in the

PersonnalAccount then it is impossible to use them. If we want to use for aiming only adding

pay for other class, the new class have to be inherited from PersonnelAccount. However, in

this situation new class would not apply the removal of pay. This violates the Liskov

Substitution Principle. On the other hand, if we want to change TransferAmount class then

this violates the Open-Closed Principle. If we make a change in the PersonnelAccount class

then it effects the TransferAmount class. Similar problems can be arise and the software can

be rigid when the software grows. Times are taken when changing or extending functionality.

For these reasons, Dependency Inversion Principle is applied to software. After applying DIP,

second version is shown on Figure 9.

public long AccountNo
public decimal Balance

void addPay(decimal value)

void removePay(decimal value)

public PersonnelAccount sender
public PersonnelAccount receiver

decimal value

void transfer()

PersonnalAccount (Low Level

Class)

TransferAmount (High Level

Class)

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
20

Figure 8: First version of the classes

After applying DIP higher level classes refer to dependencies using interface or abstract

classes. It decreases the coupling. Lower level class implements the interfaces or makes

inheritance that inherited from abstract classes. So new classes can be used without any

impact. Flexibility of software improves. Implementing this principle needs extra effort and

code view can be complex but it is handy for maintainability. Independence of classes increase

reusability.

Table 3: VS Code Metric Result

Figure 9: Second version after applying DIP

All results may vary depending on the coding technique. However, maintainability index

value for all principles will increase. The metric values formed after the application of all the

principles are shown on the Table 3.

 MI CC DIT Coupling LOC

Personnel 79 1561 5 259 5629

Personnel. General 73 98 5 49 430

Personnel. Report 68 109 5 92 367

Personnel. Payroll 75 453 5 76 1833

listUpdate 51 5 14 23

takeFormData 43 4 16 33

dataSave 52 5 14 19

TransferAmount

decimal Amount

void Transfer (ITransferSender transferSender,
ITransferReceiver transferreceiver)

interface ITransferSender

long AccountNo
decimal Balance
void addPay(decimal value)

long AccountNo
decimal Balance

void removePay(decimal

value)

long AccountNo

decimal Balance

void addPay(decimal value)
void removePay(decimal value)

 interface ITransferSender

interface ITransferReceiver

PersonnalAccount: ITransferSender, ITransferReceiver

TransferAmount

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
O. TURAN, Ö. Ö. TANRIÖVER

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
21

 Figure 10. Class Diagram of the Project

5. Discussion with Related Work

There is not much work about Single Responsibility Principle on literatur. But when we

search with keyword about refactoring, god class dividing, seperation of concern then we see

that there are works and papers. Researches have been made on the impact of refactoring on

code quality and maintenance cost in general by considering more than one project. In [28]

Hegedus and others made a study about empirical evaluation of software maintainability. The

concept of refactoring is an essential part of the development process. Fowler [29] proposed

that code smells should be the primary technique for identifying refactoring opportunities in

the code. The paper compares the differences in maintainability and source code metrics as

refactored and non-refactored source code elements. Result of the study source code elements

subjected to refactorings had significantly lower maintainability than elements not affected by

refactorings. Moreover, refactored elements had significantly higher size related metrics,

complexity, and coupling. Also these metrics changed more significantly in the refactored

elements. In our research we show that if source code is refactored as the principles then code

can reach the high cohesion, low coupling, high maintainability index values. Another study

[30] states that single refactorings only make a very little changes on maintainability but a

whole refactoring period can significiantly increase maintainability. In [31] mention the

existing literature lacks observations about the relations between metrics/code smells and

refactoring activities performed by developers. But our paper indicates relation between

metrics and refactoring activities. We show that code metrics depend on a good design

refactoring. Other researches like [32], [33] state extract class and move method are found the

most frequently considered refactoring activities. For making a good refactoring as the SOLID

principles that we state, developer should make extracting class and moving method.

6. CONCLUSION

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
22

The SOLID principle aims reducing dependencies and increasing maintainability. Every

principle require additional time and effort spent to apply it during the design time and they

can increase the complexity of code because of increasing number of interfaces or classes.

However, they produce a flexible design, loose coupling, and higher maintainability. Code is

more robust, more stable and better understandable. İn addition to these Visual Studio code

metric values can give an insight about maintainability and complexity of the code. The

developer can make an assessment about code with help of code metric values before

beginning maintenance task or refactoring.

In the ISO 9126 and VS-SOLID mapping, coupling deals with stability and modularity.

Mitigating on the technologies or evolving changes is critical for software developers to

stabilize a system and preserve its design. Instable software tends to increase maintenance cost

up to 75 % of the software total costs [26, 27]. Therefore, stability is very important. Applying

stability early at the model level enables the developers to improve maintainable software and

reduce the software cost. Stability can enhance reusability, as it focusses on providing code

part that remain unchanged over time. This ensures a stable core design and thus a stable

software. In order for the software to stabilize, it is important to emphasize that the coupling

is low in a software. If coupling is low, then it can need making impact analysis less.

This work shows that SOLID design principles increase the maintainability of the code,

generally reduce complexity of the code and reduce dependency, provide flexibility to the

code. Design principles improve the separation of concern through weaker coupling and

stronger cohesion. However, if these principles are applied without measure then some

potentially undesirable consequences may occur. They are the proliferation of relatively small

concrete classes, the proliferation of abstract classes and interfaces, increasing in the depth of

the inheritance tree. As a result, Visual Studio code metrics can tell which class and which

method should be studied. Moreover, code can be structured better with the help of SOLID

design principles. Further study could be to investigate the SOLID effect with different code

metric measurement programs by making more changes in a larger project or it could be to

build a design principle compliant architecture infrastructure and force developers to code

accordingly.

REFERENCES

[1] Robert L. Glass , "Frequently Forgotten Fundamental Facts about Software Engineering", An Article

in IEEE Software May/June 2001

[2] R. C. Martin, “Design Principles and Design Patterns”, [Online]. Available:

http://www.objectmentor.com, 2000

[3] Sandi Metz (Duke University) , “SOLID Object-Oriented Design”, Talk given at the 2009 Gotham

Ruby Conference in May, 2009. Online at http://www.youtube.com/watch?v=v-2yFMzxqwU

[4] Walid Al-Ahmad, “A framework for conceptual modeling in OOP”, Journal of the Franklin Institute,

2006

[5] Kostas Zotos, “Object-oriented design principles in mathematics”, Applied Mathematics and

Computation, 2006

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
O. TURAN, Ö. Ö. TANRIÖVER

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
23

[6] Ignatios Deligiannis, Martin Shepperd, Manos Roumeliotis, Ioannis Stamelos, “An empirical

investigation of an object-oriented design heuristic for maintainability”, The journal of system

and software, 2001

[7] Magiel Bruntink, Arie van Deursen, “An empirical study into class testability”, The Journal of System

and Software, 2006

[8] Gabriele Bavota, Andrea De Lucia, Rocco Oliveto , “Identifying Extract Class refactoring

opportunities using structural and semantic cohesion measures”, The Journal of Systems and

Software, 2011

[9] David Lievens, William Harrison, “Abstraction over implementation structure with symmetrically

encapsulated multimethods”, Science of Computer Programming, 2013

[10] Alexander Chatzigeorgiou, Nikolaos Tsantalis, Ignatios Deligiannis , “An empirical study on

students ability to comprehend design patterns”, Computers & Education, 2008

[11] Gabriale Arevalo, Stephane Ducasse, Silvia Gordillo, Oscar Nierstrasz , “Generating a catalog of

unanticipated schemas in class hierarchies using Fomal Concept Analysis”, Information and

Software Technology, 2010

[12] Vassilis E. Zafeiris, Sotiris H. Poulias, N.A. Diamantidis, E.A. Giakoumakis, “Automated

refactoring of super-class method invocations to the Template Method design pattern”,

Information and Software Technology, 2016

[13] Mahmood Ghaleb Al-Bashayreh, Nor Laily Hashim, Ola Taiseer Khorma, “Context- Aware Mobile

Patient Monitoring Framework Development”, 2013 International Conference on Electronic

Engineering and Computer Science, 2013

[14] Jehad Al Dallal , “Constructing models for predicting extract subclass refactoring opportunities

using object-oriented quality metrics”, information and Software Technology, 2012

[15] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, Alexander Chatzigeorgiou, “Identification and

application of Extract Class refactorings in object-oriented systems”, Journal of Systems and

Software, 2012

[16] Harmeet Singh, Syed Imtiyaz Hassan , “Effect of SOLID Design Principles on Quality of Software:

An Empirical Assessment”, International Journal of Scientific & Engineering Research, April-

2015

[17] Paul Oman and Jack Hagemeister. “Metrics for assessing a software system’s maintainability”.

Proceedings International Conference on Software Mainatenance (ICSM), 1992, pp 337-344.

[18] www.microsoft.com, 01.08.2017

[19] ISO 9126-1 Software Engineering - Product Quality - Part 1: Quality Model, 2001.

[20] Hiyam Al-Kilidar, Karl Cox, Barbara Kitchenham, “The Use and Usefulness of the ISO/IEC 9126

Quality Standard”, International Symposium on Empirical Software Engineering, 2005

[21] ISO/IEC 25010:2011, http://www.iso.org/iso/catalogue_ detail.htm?csnumber=35733, 01.08.2017

[22] Morteza Asadi, Hassan Rashidi, “A Model for Object Oriented Software Maintainability

Measurement”, I.J. Intelligent Systems and Application (MECS), 2016

[23] https://docs.microsoft.com/tr-tr/visualstudio/code-quality/code-metrics-values, 01.08.2017

[24] Ho-Won Jung, Seung-Gweon Kim, Chang-Shin Chung, “Measuring Software Product Quality: A

Survey of ISO/IEC 9126”, IEEE Software, vol. 21, pp. 88-92, 2004

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
24

[25] Meine J.P. van der Meulen, Miguel A. Revilla, “Correlations between Internal Software Metrics and

Software Dependability in a Large Population of Small C/C++ Programs”, 18th IEEE

International Symposium on Software Reliability Engineering, 2007

[26] Galorath, D.D., “Software total ownership costs: development is only job one” Softw. Tech. News,

23–32, 2008

[27] Chen, J.-C., Huang, S.-J., “An empirical analysis of the impact of software development problem

factors on software maintainability” System Software. 82, 981–992, 2009

[28] Péter Hegedűsa, István Kádárb, Rudolf Ferenc, Tibor Gyimóthyb, “Empirical evaluation of software

maintainability based on a manually validated refactoring dataset”, Information and Software

Technology, 2017

[29] M. Fowler, “Refactoring: Improving the Design of Existing Code”, Addison-Wesley, 1999.

[30] Gábor Szoke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, Tibor Gyimóthy, “Empirical study on

refactoring large-scale industrial systems and its effects on maintainability”, The Journal of

Systems and Software, 2016

[31] Gabriele Bavotaa, Andrea De Luciab, Massimiliano Di Pentac, Rocco Olivetod, Fabio Palombab,

“An experimental investigation on the innate relationship between quality and refactoring”,

The Journal of Systems and Software, 2015

[32] M. Gatrell, S. Counsell, “The effect of refactoring on change and fault-proneness in commercial C#

Software”, Science of Computer Programming, 2014

[33] Jehad Al Dallal, “Identifying refactoring oppurtunities in object oriented code: A systematic

literatur review”, Information and Software Technology, 2014

