AJIT-e: Online Academic Journal of Information Technology

2018- Cilt/Vol: 9-Sayi/Num: 34

DOI: 10.5824/1309-1581.2018.4.001.x
http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344

Received : 03.04.2018 Editorial Process Begin: 28.04.2018 Published: 03.10.2018

An Experimental Evaluation of the Effect of SOLID Principles to

Microsoft VS Code Metrics

Osman TURAN, Ankara University Graduate School of Natural and Applied Sciences,
osmanturan@gmail.com

Omer (")zgiir TANRIOVER, Faculty of Engineering Computer Engineering Department Ankara
Turkey, Asst. Prof Dr. Ozgiir Tanriéver, tanriover@ankara.edu.tr

ABSTRACT

Software maintenance is necessary for reasons such as changes in user needs, changes in the
operating conditions of the system due to changes in the infrastructure, the occurrence of
unforeseen errors. The suitability of the software for maintenance operations is a significant
influence in reducing the cost. Using only basic object oriented programming concepts do not
show that we are writing maintainable code in our applications. Object oriented design
principles such SOLID are about reducing dependencies and increasing maintainability.
ISO/IEC 9126 is about maintainability but ISO/IEC 9126 is not clear about whether all inputs
to measurement should be used together in conjunction or whether they should be used as
appropriate or available. Indeed, ISO/IEC 9126 provides no guidance, heuristics, rules of thumb,
or any other means to show how to trade off measures, how to weight measures or even how to
simply collate them. In this study each sub-characteristic of ISO/IEC maintainability with help
of Visual Studio (VS) code metric tool is assessed. The focus of this assessment is on
maintainability and its sub-characteristics like analyzability, testability, changeability and
stability. Before doing an analysis, each sub-characteristics of maintainability part of ISO/IEC
9126 standard are mapped to five VS code metrics for measurement of characteristics. This work
shows the effect of object oriented design principles (SOLID) to the maintainability, complexity
and flexibility of the code while associating ISO/IEC, VS code metric and SOLID.

Keywords: Object Oriented Design Principles, SOLID, ISO/IEC 9126, Code Metrics.

SOLID Ilkelerinin Microsoft VS Code Metrigine Etkisinin

Oz

Deneysel Olarak Degerlendirilmesi

Yazilimin bakimi, kullanic ihtiyaglarindaki degisiklikler, altyapida meydana gelen degisiklikler,
sistemin calisma kosullarimdaki degisiklikler, ongoriilemeyen hatalarm ortaya cikmast gibi
nedenlerle gereklidir. Yazilumin bakim islemleri icin uygunlugu maliyeti diigiirmede onemli bir
etkendir. Sadece temel nesne tabanli programlama kavramlarim kullanmak, uygulamalarimizda
siirdiiriilebilir kod yazdiimizi gostermez. SOLID gibi nesneye yonelik tasarim prensipleri
bagimhiliklar1 azaltmak ve yazilim bakimini artirmak ile ilgilidir. ISO/IEC 9126 bakim
yapilabilirlikle ilgilidir fakat ISO/IEC 9126 élciime iliskin tim girdilerin bir arada m1 yoksa ayri
olarak mi kullamlmalar: gerektigi konusunda net degildir. Nitekim, ISO/IEC 9126 pratik olarak
veya deneysel tarzda yazilim Olgiimlerinin nasi yapilacagi, bu Olciimlerin nasil basitce
toplanaca$, dlciimlerin nasil deistirilebilecegi konusunda rehberlik saglamaz. Bu caligmada,



AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayi/Num: 34
DOI: 10.5824/1309-1581.2018.4.001.x

Visual Studio (VS) kod metrik aract yardimiyla ISO / IEC bakim yapilabilirligin her alt-ozelligi
degerlendirilmistir. Bu degerlendirmenin oda§: siirdiiriilebilirlik ve analiz edilebilirlik, test
edilebilirlik, degistirilebilirlik ve kararlilik gibi alt 6zellikler iizerine odaklanmaktadir. Bir analiz
yapmadan once, ISO / IEC 9126 standardimin bakim yapilabilirlik béliimiiniin her bir alt-
karakteristigi ozelliklerin 6l¢iimii icin bes VS kod metrigine eslenmistir. Bu caligma, nesneye
yonelik tasarim ilkelerinin (SOLID) ISO / IEC, VS kod metrigi ve SOLID'i iliskilendirerek
kodun bakim yapilabilirligi, karmagikli$1 ve esnekligi iizerindeki etkisini gosterir.

Anahtar Kelimeler: Nesne Yénelimli Programlama Prensipleri, SOLID, ISO/IEC 9126, Kod Metrikleri.

1. Introduction

Software-related post-works hold an important place in IT departments. A software system
that does not need change over time is unthinkable. Software maintenance is necessary for
reasons such as changes in user needs, changes in the operating conditions of the system due
to changes in the infrastructure, the occurrence of unforeseen errors. According to the
literature, maintenance typically consumes about 40 to 80 percent (60 percent average) of
software costs. [1]. Therefore, it is probably the most important life cycle phase.

The suitability of the software for maintenance operations is a significant influence in
reducing the cost. Quality and maintenance have an interesting relationship. Trying to
improve one quality attribute often degrades another. For example, attempts to improve
efficiency often degrade modifiability. [1]. But object oriented design principles can overcome
of this problem. Using only basic object oriented programming concepts do not show that we
are writing maintainable code in our applications. So any architect, developer, or information
technology (IT) professional who designs, builds, or operates applications and services should
know how to implement object oriented programming system (OOPS) and use them in right
manner, that is where five object oriented principles (also called as SOLID Principles) comes
to mind. SOLID is an acronym for the first five object oriented design principles (Single
responsibility, Open-closed, Liskov substitution, Interface segregation, Dependency
inversion) introduced by Robert C. Martin [2]. These principles, when combined together,
make it easy for a programmer to develop software that are easy to maintain and extend over
time. [3]. Metric changes on the code are measured by Microsoft Visual Studio (VS) Code
Metrics tool. Code metrics in Visual Studio is a tool for measuring the quality and complexity
of our code. It provides us various metrics whose values validate our code. [18][23]. VS code
metrics are used because we did all the code enhancements on VS.

While maintainability index can give an opinion for determining the maintainability of the
source code of a system, it is hard using the maintainability index to the desired effect. Because
computed value of the maintainability index does not provide clues about characteristics of
maintainability or it is not give clue about taking an action to improve this value. The
maintainability index has been proposed objectively determine the maintainability of software
systems based on the status of the corresponding source code. In this study each sub-
characteristics of ISO/IEC maintainability with help of Visual Studio (VS) code metric tool is
assessed. The evaluation was made by associating the metrics with the VS code metric results

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
0. TURAN, O. O. TANRIOVER

for each maintainability characteristic. Before doing an analysis, each sub-characteristics of
maintainability part of ISO/IEC 9126 standard are mapped to five VS code metrics for
measurement of characteristics.

Specifically, this study contains an assessment of the effect of SOLID principles on the
Visual Studio code metrics using a human resource management system project and named
as HRS. The system developed with two different ways, without and with solid principles. We
captured the code metrics of HRS in the default design and after the implementation of these
principles in the second design. We compare the results with the context of the improvements
and benefits obtained from the implementation. At the same time although the ISO/IEC 9126
has some usefulness about counting and assessing metrics [20], the results have been assessed
within the scope of ISO/IEC 9126 [19], which proposes six main factors that determine overall
quality are maintainability, usability, efficiency, portability, functionality and reliability. The
focus of this assessment is on maintainability and its sub-characteristics like analyzability,
testability, changeability and stability.

The paper is organized as follows. Section 2 provides literature analysis on SOLID
principles and code metrics. Section 3 present a brief overview of the SOLID principles and
VS code metrics. Section 4 and its sub-sections recapitulate the ISO/IEC 9126 standard for
software product quality, focusing on the characteristics of maintainability and provide the
application method of design principles to classes and application results of code metrics.
Section 5 compares and discusses with related works. The last section summarizes the main
findings.

2. Related Work

Although separately each of SOLID design principles as Object Oriented Design Principles
have been investigated widely such as effect of quality on software, rules and techniques in
object-oriented programming, contribution to maintenance cost etc. There are not much
published papers include all SOLID principles and addressing all of these principles which
deal with the software effect with Visual Studio code metrics. In paper [4] Al-Ahmad
contribute a framework for conceptual modelling and focuses on the conceptual modelling
facet of inheritance and suggests better support for it in object oriented programming. He has
examined the influence of the Liskov Substitution Principle, interfaces, separate type, and class
hierarchies on conceptual modeling. There are some papers mentioned that Liskov
Substitution Principle in such papers as [7], [9], [11]. In [5] Zotos presents object-oriented
design principles to solve the software crisis between mathematics and computer science. He
used all of the design principles contained in this paper. These principles show the right
direction of designing and helps in avoiding costly mistakes at the designing stage. In order
to write quality code, it is needed to understand the principles and methodologies behind the
language.

Deligiannis, Shepperd, Roumeliotis and Stamelos made an empirical investigation of
object-oriented design heuristic for maintainability [6]. They aim two goals. First, to investigate
the impact of a design heuristic on the maintainability of object-oriented designs. The second
goal is to investigate the relationship between OO design heuristic and metrics. A good design

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayi/Num: 34
DOI: 10.5824/1309-1581.2018.4.001.x

allows us to easily plug-in new functionality in terms of new classes and new methods without
a need to re-implement the results of the previous iteration cycles. In paper [8] Bavota, De
Lucia and Oliveto try identifying extract class refactoring opportunities using structural and
semantic cohesion measures. They propose an Extract Class refactoring method based on
graph theory that exploits structural and semantic relationships between methods. They
summarize that during software development the classes of a system undergo continuous
modifications making the source code more complex and drifting away from its original
design. In particular, due to strict deadlines programmers do not always have a bunch of time
to make sure everything conforms to object oriented programming (OOP) guidelines. When
the added responsibility grows and breeds, the class becomes too complex and its quality
deteriorates. Paper [10] presents an observational study on students” ability to understand and
apply design patterns and used Object-Oriented Design Principles, such as Open-Closed,
Single Responsibility, Dependency Inversion, Interface Segregation and Liskov Substitution
principles. Paper show that the majority of students correctly identified maintenance problems
as the main symptom of a poor architecture that according to the general belief that design
patterns solve maintenance issues.

Paper [12] introduce an algorithm for the discovery of refactoring and assess Dependency
Inversion Principle use Liskov’s Substitution Principle and Design by Contract requirements
on class contract preservation during sub- classing to become clearer of implementation
inheritance. Context aware mobile patient monitoring framework development issue is
discussed in [13]. As the paper, design patterns can be used as a method to document
application frameworks and design principles are good ideas help software developers to
build better design. Design patterns are used as tools for applying the design principles. Five
design principles that takes place in this paper support reusability and extensibility. Paper [14]
makes models for predicting extract subclass refactoring using object oriented quality metrics.
Talk about refactoring that it has several benefits such as enhancing the code’s
understandability, maintainability, testability. Therefore, design principles provide these
properties. Paper [15] try to identify and apply of extract class refactoring in object oriented
systems. It talks about a class that should implement only one concept and should only change
when the concept it encapsulates evolves.

3. Definition of Solid Design Principles and Used VS Code Metrics

The Single Responsibility Principle — S means that there should never be more than one
reason for a class to change [2]. If there is more than one motive for changing a class, then that
class is assumed to have more than one responsibility, which results as high coupling. This
kind of coupling leads to fragile designs that can break in unexpected ways for any change
requirements [16].

The Open Close Principle — O requires software entities like classes, modules and functions
should be open for extension, but closed for modification [2]. An entity can allow its behavior
to be extended without modifying its source code or a class should be easily extendable
without modifying the class itself. When requirements change, you extend the behavior of
such modules by adding new code, not by changing old code that already works.

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
0. TURAN, O. O. TANRIOVER

The Liskov Substitution Principle — L requires derived type must fully support the
substitution of their base types. [2] Every subclass/derived class should be substitutable for its
base/parent class. If any module is using a Base class then the reference to that Base class can
be replaced with a Derived class without affecting the functionality of the module. While
implementing derived classes, derived classes just extend the functionality of base classes
without replacing the functionality of base classes.

The Interface Segregation Principle — I requires clients should not be forced to depend upon
interfaces that they do not use [2]. When a client depends upon a class that contains interfaces
that the client does not use, but that other clients do use, then that client will be affected by the
changes that those other clients force upon the class.

The Dependency Inversion Principle — D requires High Level Modules should not depend
upon Low Level Modules. Both should depend upon abstractions. Abstractions should not
depend upon details. However, details should depend upon abstractions [2]. Entities must
depend on abstractions not on concretions. It states that the high-level module must not
depend on the low-level module, but they should depend on abstractions.

Then how important are these principle? Is one more important than the other is or are they
all equally? In this experiment we will to address these questions.

On the other hand, code complexity deals with the lack rate and robustness of the
application. Complex code is difficult to test and it is difficult to maintain. When a developer
writes a code, developer must adhere boundary values of metrics to ensure the code is well
written, understandable and maintainable. Code Metrics is an important measure that let us
understand the complexity and maintainability of the code. These metrics are specified that
estimation how error prone the program source code is due to its complexity or which are
most likely to cause problems in the future. Developer can understand which classes, which
methods, which module should be reworked or refactored. Visual Studio uses five code
metrics to help users understand their code better [18] [23]. They are maintainability index,
cyclomatic complexity, the depth of inheritance, class coupling and the line of code.

Maintainability Index (MI) is a metric aimed at assessing software maintainability. The
Maintainability Index was introduced at the International Conference on Software
Maintenance in 1992 [17]. MI has evolved into numerous variants. It has been successfully
applied to a number of industrial strength software systems. It is based on three code metrics:
Namely the Halstead Volume, the Cyclomatic Complexity and Lines of Code. It is based on
the following formula [18]:

Maintainability Index (MI) =
MAX (0, (171 - 5.2 * In (Halstead Volume)
- 0.23 * Cyclomatic Complexity
-16.2 * In (Lines of Code)) * 100 / 171)

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayi/Num: 34
DOI: 10.5824/1309-1581.2018.4.001.x

Maintainability Index (MI) is a composite metric that incorporates a number of traditional
source code metrics into a single number that indicates relative maintainability. The MI is
comprised of weighted Halstead Volume (HV), McCabe's cyclomatic complexity (CC) and
Lines of Code (LOC). MI calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability. As can be
seen from the formula increasing of the cyclomatic complexity or line of code reduces the value
of maintainability index. As pointed by Van der Meulen and M.A Revilla [25], there are very
strong connections between LOC and HV, LOC and CC. The study provides an approximate
expression that have been used in our study for MI value.

The Cyclomatic Complexity (CC) measures the structural complexity of the code. It is
created by calculating the number of different code paths in the flow of the program. Depends
on how many different control flow of your code can execute depending on various inputs. A
program that has complex control flow will require more tests to achieve good code coverage
and will be less maintainable. The cyclomatic complexity definitely reveals a code smell.

The Depth of Inheritance indicates the number of class definitions that extend to the root of
the class hierarchy. The deeper the hierarchy the more difficult it might be to understand
where particular methods and fields are defined or redefined. The idea is that if more types
exist in an inheritance hierarchy, the code will likely be more difficult to maintain as a result.
However, a high depth of inheritance can also indicate a greater level of code reuse. This
means that it is difficult to say what a good depth is. Remark that, (Microsoft) MS Visual Studio
does include a code analysis rule, which generates a warning when an inheritance hierarchy
is more than four levels deep.

The Class Coupling measures the coupling to unique classes through parameters, local
variables, return types, method calls, generic or template instantiations, base classes, interface
implementations, fields defined on external types, and attribute decoration. Good software
design dictates that types and methods should have high cohesion and low coupling. High
coupling indicates a design that is difficult to reuse and maintain because of its many
interdependencies on other types. If we have a class that does not reference other class then its
class coupling will be zero whereas if we refer to various classes in our class (like creating
complex type properties) then it will increase class coupling.

The Lines of Code indicates the approximate number of lines in the code. The count is based
on the intermediate language code and is therefore not the exact number of lines in the source
code file. A very high count might indicate that a type or method is trying to too much work
and it should be split up. It might also indicate that the type or method might be hard to
maintain.

4. Mapping of VS Metrics to ISO/IEC 9126 Software Product Quality

ISO/IEC 9126 defines a quality model that comprises 6 characteristics and 27 sub
characteristics of software product quality. ISO/IEC 9126 also defines one or more metrics to
measure each of its sub characteristics [24]. For example, the quality level of a software
product’s maintainability can be represented by measured values of its sub characteristics. The

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
0. TURAN, O. O. TANRIOVER

ISO/IEC 9126 standard is divided into four parts. Quality model, internal metrics, external
metrics and quality in use metrics. The first three parts are concerned with describing and
measuring the quality of the software product, the fourth part evaluates the product from the
user point of view. Internal quality is believed to impact external quality, which in turn affects
quality in use.

Internal quality is assessed based on four characteristics (functionality, efficiency,
maintainability, portability) and their respective sub-characteristics. These are evaluated by
employing a set of metrics. For instance, the quality level for maintainability takes into account
the measured values of four sub-characteristics. The above quality characteristics are abstract
concepts and therefore not directly measurable and observable. Each of them is characterized
by a set of sub-characteristics.

In this study, we focused on the maintainability characteristics that sub-characterized:

Analyzability: Degree to which the software product can be diagnosed for deficiencies or
causes of failures in the software, or for the parts to be modified to be identified.

e Changeability: Degree to which the software product enables a specified modification to
be implemented or the ease with which a software product can be modified.

e Stability: Degree to which the software product can avoid unexpected effects from
modifications of the software.

e Testability: Degree to which the software product enables modified software to be
validated.

However, in new version of ISO/IEC, modularity and reusability are added to sub-
characteristics [21].

e Modularity: Degree to which a system or computer program is composed of discrete
components such that a change to one component has minimal impact on other
components.

¢ Reusability: Degree to which an asset can be used in more than one software system or in
building other assets.

ISO/IEC 9126 is not clear about whether all inputs to measurement should be used together
in conjunction or whether they should be used as appropriate or available. Indeed, ISO/IEC
9126 provides no guidance, heuristics, rules of thumb, or any other means to show how to
trade off measures, how to weight measures or even how to simply collate them [20].

Since our main aim was to evaluate maintainability coupled with MS VS standard
environment, each sub-characteristics of maintainability part of ISO/IEC 9126 standard are
mapped to five VS code metrics for measurement of characteristics. The changeability
characteristic of a system is linked to properties such as complexity of the source code. Source

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



14

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayi/Num: 34
DOI: 10.5824/1309-1581.2018.4.001.x

code complexity is measured in terms of cyclomatic complexity. The analyzability
characteristic of a system is effected from lines of code (LOC) and complexity attributes. The
testability characteristic of a system is effected from complexity and LOC attributes. Stability
is effected from coupling. A larger system requires, in general, a larger effort to maintain.
Higher size causes lower analyzability and it is hard to understand the system. The complexity
property of source code refers to the degree of internal disorder of the source code. Large code
units are complex. In addition, complex units are difficult to analyze and difficult to test. If
there is duplication in the source code then it is difficult to maintain it. Excessive duplication
makes a system larger than it needs to be. In addition, it effects the analyzability and
changeability. VS code metrics and the mapping of system characteristics onto these properties
is shown in Table 1 [22].

Table 1. Mapping system characteristics onto code metrics

Analyzability 1. Lines of Code (LOC)
2. Cyclomatic Complexity (CC)
3. Number of Method & Weighted Methods in Class (WMC)
Changeability 1. LOC
2. CC
3. Depth of Inheritance (DIT)
Stability 1. Coupling
Testability 1. LOC
2. CC
Modularity 1. Coupling
2. DIT
Reusability 1. Coupling
2. WMC

4. The Effect of Application of SOLID Design Principles

The project is a Human Resource Management program. It is working on n-tier architecture.
The project has modules about employee which employee data management, personnel
tracking, accounting and payroll system, reporting etc. Changes made in the project were
made in business and Ul layer in the architecture. When we take the class diagram in the
Microsoft Visual Studio, we see that the software has 48 class in working layer. It is indicated
Figure 10.

In the first phase of work, Visual Studio (VS) code metric tool started and default metric
values of the whole project received before making any change. It is shown on the Table 2. In
table 2, Personnel refers to the whole solution. General, Report and Payroll represent a project
in the solution. ListUpdate, takeFormData and dataSave indicates a method. The modules to
be modified are selected within the range of low MI values. In the first stage, only one method
was modified according to the SOLID design principles. The changes were made in order.
Modified method is about subsistence money calculation. The task of method is to get form
data and assign these data to list object. The method does checks about journal control when
doing these operations. There are several if blocks in the method. Code metric values
recalculated after every change made.

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
0. TURAN, O. O. TANRIOVER

Table 2. VS Code Metrics Result

Personnel 73 1593 5 271 5632
Personnel. General 71 97 5 50 428
Personnel. Report 68 109 5 93 365
Personnel. Payroll 73 452 5 79 1835
listUpdate 49 5 15 24
takeFormData 40 6 21 46
dataSave 49 5 15 24

Single Responsibility Principle: To solve a problem, find the sub problems in the domain
that working in. Divide each sub problem into sub-sub-problems until reaching the point
where such a mini problem has just one single task left. Then solve each of these mini problems
in its own class. Initially, we had a method that used to retrieve form data and bind them to
list items. It is shown in the Figure 1. In addition, there were “if blocks” in the method for
controlling data. Controlling data is for assurance of input validation.

retrieveFormData

List<string> formltem

public List<string> retrieveFormData()

Figure 1. Initial version on SRP

To implement this principle within the method, list items are declared in another class. It is
invoked from there. All controls such as steps for form control and assignment of data to list
items (controlListData) which exist in the single incohesive large method is separated to
different cohesive methods. Each new mehod is simple and has just one single responsibility.
Result classes after applying SRP is shown in Fiure 2. At the end of single responsibility
principle refactor, Visual Studio code metric tool was run again. Maintainability index
increased by 7 percent. In addition, class-coupling value decreased. On the other hand,
according to ISO/IEC 9126 system characteristics stability, modularity and reusability have
increased. Because coupling value has decreased.

ListofFormData retrieveFormData

» pub_lic List<string>
. . retrieveFormData()
List<string> formitem public controlFormData()
public controlListData()

Figure 2. After applying refactoring on SRP

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344

15



16

AlJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayi/Num: 34
DOI: 10.5824/1309-1581.2018.4.001.x

Open Closed Principle: An entity can allow its behavior to be modified without altering its
source code. Modules that adhere to open-closed principle have two primary attributes. First
is open for extension that it is possible to extend the behavior of the module as the
requirements of the application change. Second is closed for modification that extending the
behavior of the module does not result in the changing of the source code or binary code of
the module itself. There are controls about detecting journal entries and filtering operations
about type of journal data in the modified class.

public Message<string> JournalEntries()
public FilterResult<string> FilterJournalData()

Figure 3. Initial class before applying OCP

To implement open closed principle all controls and filtering processes were reorganized.
To do this, we put the implementation of filtering or implementation of controlling in another
class. After applying implementation, we do not have to modify the new class for filtering or
for controlling new criteria. Because the behavior of the requested operations are marshalled
to the new class. Moreover, we can extend the behavior of the new class to support new
criteria. Because all we simply have to do is, pass in a new class. Therefore, it is open for
extension. Subclass provides extension by not putting the abstraction in codified interfaces but
in over ridable behavior. It often leads to composite systems and overall realizes more
opportunities for reuse. At the end of open closed principle implementation, Visual Studio
code metric tool was run again. Maintainability index (MI) increased by about 4.5 percent.
Cyclomatic Complexity did not change, class coupling decreased by about 6.25 percent. In
addition to MI, stability, modularity, reusability, analyzability and changeability have
increased. Because some of them depend on coupling and coupling is decreased. In addition,
because of the ease of adding new features or changing existing ones analyzability and
changeability characteristics were positively affected.

interface ILedger Journal : ILedger

public void Account() public void Account()

Ledger : ILedger

Book : ILedger

public void Account() public void Account()

JournalFilter : IFilter

public void Account()
e.org/?menu=pages&p=details_of_article&id=344




An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
0. TURAN, O. O. TANRIOVER

BookFilter : IFilter

interface IFilter

ublic void Account
public void Filter(string entry) P 0

LedgerFilter : IFilter

public void Account()

Figure 4. Diagram after applying OCP

Liskov Substitution Principle: References to base classes must be able to use objects of
derived classes without knowing it. If a software has a base class and a few number of
subclasses, the rest of the code should always refer to base and not to subclasses. This principle
is just an extension of the Open Close Principle.

CalculateAccount

Public AccountInfo TransferBookAccount()
Account CalculateBookAccount(Account acc)
Account CalculateTransaction(Account acc)
Account CalculateEntries(List<string> entry)

Figure 5. First class before applying LSP

Initially, we had class calculateAccount that contains methods about book of account for
accounting monetary transactions. However, method of calculation can be differ between
accounts. In addition, we had another class getAccount derived from calculateAccount class.
In the method of getAccount class calculations are done as type of account information.
Method of calculation for BookAccount, Transaction and Entries was diverging according to
the account information with if blocks. For applying this principle, calculateAccount is re-
written as the type of account information and calculateAccount class is derived from the
related class.

BookTransfer :
interface ITransferAccount ITransferAccount

public void

JournalTransfer:
ITransferAccount

void TransferAccount()

public void
TransferAccount()

Account CalcBookAccount :
ICalcType

public void
Calculate(Account acc)

http://www.ajit-e.org/?menu=page

cle&id=344 |—17—|_

_1
—

—



18

AlJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayi/Num: 34
DOI: 10.5824/1309-1581.2018.4.001.x

interface ICalcType Account CalcTransaction :
ICalcType

public void
Calculate(Account acc) public void
Calculate(Account acc)

public void
Calculate(Account acc)

Figure 6. Diagram after applying LSP

After making changes for Liskov Substitution Principle, maintainability index of the project
increased by about 1.3 percent. However, cyclomatic complexity increased by about 0.15
percent. If we assess this according to ISO/IEC 9126, base types can be reused and the derived
types can be changed.

Interface Segregation Principle: No client-code-object should be forced to depend on
methods it does not use. Each code object should only implement what it needs, and not be
required to implement anything else. The interface segregation principle is all about reducing
code objects down to their smallest possible implementation and removing dependencies the
object does not need to function properly. Because of applying this principle is to have small
and focused interfaces that define only what is needed by their implementations. For
implementing this principle in our project, the main interfaces that keep the journal records
are divided into interfaces that are smaller but contain no unnecessary objects. Initially, we
had interface IAccountRecord that contains bookRecord, ledgerRecord and journalRecord
methods. But every method differ from anothers in context. To apply this principle,
IAccountRecord is divided to IBookRecord, ILedgerRecord and IJournalRecord interfaces and
every method is derived from related interface. At the end of the interface segregation
principle implementation, Visual Studio code metric tool was run again. There was no change
in the expectation that the principle would increase the maintainability index. However,
Cyclomatic Complexity increased by about 0.4 percent. Class coupling decreased. Therefore,
the goal of this principle is helping decouple the application so that it is easier to maintain. It
is improving flexibility and possibility of reuse.

interface ILedgerRecord LedgerRecord
:ILedoerRecord
public Record public Record

LedgerRecord(List<strin LedgerRecord(List<stri
g> rec) ng> rec)

JournalRecord
LlnurnalRecord :JournalRecord

public Record public Record
JournalRecord(List<strin | — | JournalRecord(List<stri
g> rec) ng> rec)

interface

BookRecord
:1BookRecord

public Record public Record
BookRecord(List<string BookRecord(List<strin
> rec) 0> rec)

interface IBookRecord

w.ajit-e.org/?menu=pages&p=details_of_article&id=344




An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
0. TURAN, O. O. TANRIOVER

Figure 7. Diagram after applying ISP

Dependency Inversion Principle: Primarily concerned with reducing dependencies
amongst the code modules. It needs the low-level objects to define contracts that the high-level
objects can use without the high-level objects needing to care about the specific
implementation the low-level objects provide. In the project there are classes and interfaces for
reporting and notification. Reports are written in the database or in different formats.
Notification was using as sms or e-mail. To implement this principle the report generation task
and printing part separated to different interfaces. On the notification part, an abstraction is
introduced and notification methods implement it. As a result, it is allowed that both high
level and low level classes to rely on abstractions. At the end of Dependency Inversion
Principle implementation, Visual Studio code metric tool was run again. Maintainability index
increased as expected. Already expected that this principle be primarily concerned with
reducing dependencies. As a result of interface separation, high-level policy modules and low-
level detail modules were reusable and maintainable.

For dependency inversion principle, a class about worker amount and transfer to balance
sheet is changed. First version is shown on Figure 8. In the first version the high level
TransferAmount class is depend on the low level PersonnelAccount class. This increase the
coupling. The sender and receiver references the PersonnalAccount type in the
TransferAmount class. Therefore, if another account types are not taking place in the
Personnal Account then it is impossible to use them. If we want to use for aiming only adding
pay for other class, the new class have to be inherited from PersonnelAccount. However, in
this situation new class would not apply the removal of pay. This violates the Liskov
Substitution Principle. On the other hand, if we want to change TransferAmount class then
this violates the Open-Closed Principle. If we make a change in the PersonnelAccount class
then it effects the TransferAmount class. Similar problems can be arise and the software can
be rigid when the software grows. Times are taken when changing or extending functionality.
For these reasons, Dependency Inversion Principle is applied to software. After applying DIP,
second version is shown on Figure 9.

PersonnalAccount (Low Level

Class)

public long AccountNo

public decimal Balance

void addPay(decimal value)
void removePay(decimal value)

|

TransferAmount (High Level

Class)

public PersonnelAccount sender
public PersonnelAccount receiver
decimal value

void transfer()

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



20

AlJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayi/Num: 34
DOI: 10.5824/1309-1581.2018.4.001.x

Figure 8: First version of the classes

After applying DIP higher level classes refer to dependencies using interface or abstract
classes. It decreases the coupling. Lower level class implements the interfaces or makes
inheritance that inherited from abstract classes. So new classes can be used without any
impact. Flexibility of software improves. Implementing this principle needs extra effort and
code view can be complex but it is handy for maintainability. Independence of classes increase
reusability.

Table 3: VS Code Metric Result

Personnel 79 1561 5 259 5629
Personnel. General 73 98 5 49 430
Personnel. Report 68 109 5 92 367
Personnel. Payroll 75 453 5 76 1833
listUpdate 51 5 14 23
takeFormData 43 4 16 33
dataSave 52 5 14 19

interface ITransferSender interface ITransferReceiver

long AccountNo
decimal Balance
void removePay(decimal
value)

long AccountNo
decimal Balance
void addPay(decimal value)

Personnal Account: ITransferSender, ITransferReceiver

long AccountNo

decimal Balance

void addPay(decimal value)
void removePay(decimal value)

TransferAmount
.>

decimal Amount
void Transfer (ITransferSender transferSender,
ITransferReceiver transferreceiver)

Figure 9: Second version after applying DIP

All results may vary depending on the coding technique. However, maintainability index
value for all principles will increase. The metric values formed after the application of all the
principles are shown on the Table 3.

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
0. TURAN, O. O. TANRIOVER

Figure 10. Class Diagram of the Project

5. Discussion with Related Work

There is not much work about Single Responsibility Principle on literatur. But when we
search with keyword about refactoring, god class dividing, seperation of concern then we see
that there are works and papers. Researches have been made on the impact of refactoring on
code quality and maintenance cost in general by considering more than one project. In [28]
Hegedus and others made a study about empirical evaluation of software maintainability. The
concept of refactoring is an essential part of the development process. Fowler [29] proposed
that code smells should be the primary technique for identifying refactoring opportunities in
the code. The paper compares the differences in maintainability and source code metrics as
refactored and non-refactored source code elements. Result of the study source code elements
subjected to refactorings had significantly lower maintainability than elements not affected by
refactorings. Moreover, refactored elements had significantly higher size related metrics,
complexity, and coupling. Also these metrics changed more significantly in the refactored
elements. In our research we show that if source code is refactored as the principles then code
can reach the high cohesion, low coupling, high maintainability index values. Another study
[30] states that single refactorings only make a very little changes on maintainability but a
whole refactoring period can significiantly increase maintainability. In [31] mention the
existing literature lacks observations about the relations between metrics/code smells and
refactoring activities performed by developers. But our paper indicates relation between
metrics and refactoring activities. We show that code metrics depend on a good design
refactoring. Other researches like [32], [33] state extract class and move method are found the
most frequently considered refactoring activities. For making a good refactoring as the SOLID
principles that we state, developer should make extracting class and moving method.

6. CONCLUSION

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayi/Num: 34
DOI: 10.5824/1309-1581.2018.4.001.x

The SOLID principle aims reducing dependencies and increasing maintainability. Every
principle require additional time and effort spent to apply it during the design time and they
can increase the complexity of code because of increasing number of interfaces or classes.
However, they produce a flexible design, loose coupling, and higher maintainability. Code is
more robust, more stable and better understandable. In addition to these Visual Studio code
metric values can give an insight about maintainability and complexity of the code. The
developer can make an assessment about code with help of code metric values before
beginning maintenance task or refactoring.

In the ISO 9126 and VS-SOLID mapping, coupling deals with stability and modularity.
Mitigating on the technologies or evolving changes is critical for software developers to
stabilize a system and preserve its design. Instable software tends to increase maintenance cost
up to 75 % of the software total costs [26, 27]. Therefore, stability is very important. Applying
stability early at the model level enables the developers to improve maintainable software and
reduce the software cost. Stability can enhance reusability, as it focusses on providing code
part that remain unchanged over time. This ensures a stable core design and thus a stable
software. In order for the software to stabilize, it is important to emphasize that the coupling
is low in a software. If coupling is low, then it can need making impact analysis less.

This work shows that SOLID design principles increase the maintainability of the code,
generally reduce complexity of the code and reduce dependency, provide flexibility to the
code. Design principles improve the separation of concern through weaker coupling and
stronger cohesion. However, if these principles are applied without measure then some
potentially undesirable consequences may occur. They are the proliferation of relatively small
concrete classes, the proliferation of abstract classes and interfaces, increasing in the depth of
the inheritance tree. As a result, Visual Studio code metrics can tell which class and which
method should be studied. Moreover, code can be structured better with the help of SOLID
design principles. Further study could be to investigate the SOLID effect with different code
metric measurement programs by making more changes in a larger project or it could be to
build a design principle compliant architecture infrastructure and force developers to code
accordingly.

REFERENCES

[1] Robert L. Glass, "Frequently Forgotten Fundamental Facts about Software Engineering", An Article
in IEEE Software May/June 2001

[2] R. C. Martin, “Design Principles and Design Patterns”, [Online]. Available:
http://www.objectmentor.com, 2000

[3] Sandi Metz (Duke University) , “SOLID Object-Oriented Design”, Talk given at the 2009 Gotham
Ruby Conference in May, 2009. Online at http://www.youtube.com/watch?v=v-2yFMzxqwU

[4] Walid Al-Ahmad, “A framework for conceptual modeling in OOP”, Journal of the Franklin Institute,
2006

[5] Kostas Zotos, “Object-oriented design principles in mathematics”, Applied Mathematics and
Computation, 2006

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics
0. TURAN, O. O. TANRIOVER

[6] Ignatios Deligiannis, Martin Shepperd, Manos Roumeliotis, loannis Stamelos, “An empirical
investigation of an object-oriented design heuristic for maintainability”, The journal of system
and software, 2001

[7] Magiel Bruntink, Arie van Deursen, “An empirical study into class testability”, The Journal of System
and Software, 2006

[8] Gabriele Bavota, Andrea De Lucia, Rocco Oliveto , “Identifying Extract Class refactoring
opportunities using structural and semantic cohesion measures”, The Journal of Systems and
Software, 2011

[9] David Lievens, William Harrison, “Abstraction over implementation structure with symmetrically
encapsulated multimethods”, Science of Computer Programming, 2013

[10] Alexander Chatzigeorgiou, Nikolaos Tsantalis, Ignatios Deligiannis , “An empirical study on
students ability to comprehend design patterns”, Computers & Education, 2008

[11] Gabriale Arevalo, Stephane Ducasse, Silvia Gordillo, Oscar Nierstrasz , “Generating a catalog of
unanticipated schemas in class hierarchies using Fomal Concept Analysis”, Information and
Software Technology, 2010

[12] Vassilis E. Zafeiris, Sotiris H. Poulias, N.A. Diamantidis, E.A. Giakoumakis, “Automated
refactoring of super-class method invocations to the Template Method design pattern”,
Information and Software Technology, 2016

[13] Mahmood Ghaleb Al-Bashayreh, Nor Laily Hashim, Ola Taiseer Khorma, “Context- Aware Mobile
Patient Monitoring Framework Development”, 2013 International Conference on Electronic
Engineering and Computer Science, 2013

[14] Jehad Al Dallal , “Constructing models for predicting extract subclass refactoring opportunities
using object-oriented quality metrics”, information and Software Technology, 2012

[15] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, Alexander Chatzigeorgiou, “Identification and
application of Extract Class refactorings in object-oriented systems”, Journal of Systems and
Software, 2012

[16] Harmeet Singh, Syed Imtiyaz Hassan , “Effect of SOLID Design Principles on Quality of Software:
An Empirical Assessment”, International Journal of Scientific & Engineering Research, April-
2015

[17] Paul Oman and Jack Hagemeister. “Metrics for assessing a software system’s maintainability”.
Proceedings International Conference on Software Mainatenance (ICSM), 1992, pp 337-344.

[18] www.microsoft.com, 01.08.2017
[19] ISO 9126-1 Software Engineering - Product Quality - Part 1: Quality Model, 2001.

[20] Hiyam Al-Kilidar, Karl Cox, Barbara Kitchenham, “The Use and Usefulness of the ISO/IEC 9126
Quality Standard”, International Symposium on Empirical Software Engineering, 2005

[21] ISO/IEC 25010:2011, http://www.iso.org/iso/catalogue_ detail.htm?csnumber=35733, 01.08.2017

[22] Morteza Asadi, Hassan Rashidi, “A Model for Object Oriented Software Maintainability
Measurement”, L]. Intelligent Systems and Application (MECS), 2016

[23] https://docs.microsoft.com/tr-tr/visualstudio/code-quality/code-metrics-values, 01.08.2017

[24] Ho-Won Jung, Seung-Gweon Kim, Chang-Shin Chung, “Measuring Software Product Quality: A
Survey of ISO/IEC 9126”, IEEE Software, vol. 21, pp. 88-92, 2004

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344

23



24

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayi/Num: 34
DOI: 10.5824/1309-1581.2018.4.001.x

[25] Meine ].P. van der Meulen, Miguel A. Revilla, “Correlations between Internal Software Metrics and
Software Dependability in a Large Population of Small C/C++ Programs”, 18th IEEE
International Symposium on Software Reliability Engineering, 2007

[26] Galorath, D.D., “Software total ownership costs: development is only job one” Softw. Tech. News,
23-32, 2008

[27] Chen, ].-C., Huang, S.-]., “An empirical analysis of the impact of software development problem
factors on software maintainability” System Software. 82, 981-992, 2009

[28] Péter Hegedsa, Istvan Kadarb, Rudolf Ferenc, Tibor Gyimothyb, “Empirical evaluation of software
maintainability based on a manually validated refactoring dataset”, Information and Software
Technology, 2017

[29] M. Fowler, “Refactoring: Improving the Design of Existing Code”, Addison-Wesley, 1999.

[30] Gabor Szoke, Gabor Antal, Csaba Nagy, Rudolf Ferenc, Tibor Gyimoéthy, “Empirical study on
refactoring large-scale industrial systems and its effects on maintainability”, The Journal of
Systems and Software, 2016

[31] Gabriele Bavotaa, Andrea De Luciab, Massimiliano Di Pentac, Rocco Olivetod, Fabio Palombab,
“An experimental investigation on the innate relationship between quality and refactoring”,
The Journal of Systems and Software, 2015

[32] M. Gatrell, S. Counsell, “The effect of refactoring on change and fault-proneness in commercial C#
Software”, Science of Computer Programming, 2014

[33] Jehad Al Dallal, “Identifying refactoring oppurtunities in object oriented code: A systematic
literatur review”, Information and Software Technology, 2014

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=344



